for f in $FILES
do
if [ "$f" != "rawdata_md5.txt" ]
then
fastqc $f
fi
done
Done for all raw read files.
bwa index -a is SLA_3.fa
for f1 in *-1_1.fq.gz
do
f2=${f1%%_1.fq.gz}"_2.fq.gz"
new=$(echo $f2| cut -d'-' -f 1)
base="Filtered.fq.gz"
java -Djava.io.tmp.dir=/scratch/ -Xmx1g -jar /N/soft/rhel6/trimmomatic/0.35/trimmomatic-0.35.jar PE $f1 $f2 -baseout ../cleaned/$new$base ILLUMINACLIP:/N/soft/rhel6/trimmomatic/0.35/adapters/TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:25 MINLEN:36
done
for f in $FILES
do
if [ "$f" != "rawdata_md5.txt" ]
then
fastqc $f -o 'cleanedQC directory'
fi
done
for f in $FILES
do
gzip -d $f
done
ref='/N/dc2/projects/gibsonTomato/genomes/SLA_3.fa'
for f1 in *_1P.fq
do
f2=${f1%%_1P.fq}"_2P.fq"
bwa mem $ref $f1 $f2 -t 32 > $f1-aligned.sam
done
We use the BAM files from mapping to tomato genome as input into STACKS (skipping process_radtags
)
module load gcc/4.9.2
module load stacks
ref_map.pl -m 3 -S -T 15 -b 1 -A 'BC1' \
-o /N/dc2/projects/gibsonTomato/jaltomata/rawdata/release_data/stacksOutput \
-p Jsi6Filtered_1P.fq-aligned.sam.bam \
-p Jum2Filtered_1P.fq-aligned.sam.bam \
-r ...<all_individual BAM files>...
module load gcc/4.9.2
module load stacks
genotypes -P /N/dc2/projects/gibsonTomato/jaltomata/rawdata/release_data/stacksOutput \
-b 1 -r 20 -c -m 6 -t BC1 -o joinmap
See jaltomataMapping_5.Rmd
for details.
See QTL_scanning.Rmd
for details
Identifying candidates within QTL regions via blasting marker consensus sequences to tomato.
loci <- herm_nec_color_rgb[herm_nec_color_rgb$lod > 2.73,]
loci <- loci[- grep("cL", row.names(a)),]
write.table(loci, sep=",", file="herm_nec_col_RGB.loci")
python .\getQTLMarkers.py -v -p .\consensus_seq_jalMap_6_17.fq -q .\herm_nec_col_RGB.loci.txt -o .\
consensus_seq_jalMap_6_17.fq
is a fq file with consensus sequences for all loci on the map.
getQTLMarkers.py
will output fq files for all groups that contain QTL.
blat /N/dc2/projects/gibsonTomato/genomes/itag_3.2/ITAG3.2_CDS.fasta L.3.consensus.fa output.L3.blast9 -t=
dna -q=dna -out=blast9
python .\parseBlast.py -v -p .\herm_nectar_color_rgb\output.L3.blast9 -o .\herm_nectar_color_rgb\summaryL.3 -t cds -s .\herm_nectar_color_rgb\61.out.txt