Skip to content

giove91/affine-coxeter

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Hyperbolic elements in affine Coxeter groups

This program checks Lemma 3.21 of [PS19] for the exceptional affine Coxeter groups F4, E6, E7, E8 (the case G2 can be easily checked by hand). The lemma is checked for all hyperbolic elements u in [1,w], without the irreducibility hypothesis.

Requirements: SageMath 8.8 and Python 2.7.

Usage

sage check_hyperbolic.sage F4
sage check_hyperbolic.sage E6
sage check_hyperbolic.sage E7
sage check_hyperbolic.sage E8

The optional argument -v can be added to print more information.

The case C is also implemented. For example:

sage check_hyperbolic.sage C2

Bibliography

[Arm09] D. Armstrong, Generalized noncrossing partitions and combinatorics of Coxeter groups, Memoirs of the American Mathematical Society (2009).

[Hum92] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge University Press (1992).

[MS17] J. McCammond and R. Sulway, Artin groups of Euclidean type, Inventiones Mathematicae 210(1), 231-282 (2017).

[PS19] G. Paolini and M. Salvetti, Proof of the K(π,1) conjecture for affine Artin groups, arXiv preprint 1907.11795 (2019).

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages