-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmetrics.py
600 lines (480 loc) · 22.8 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
import torch
import numpy as np
import torchvision
from scipy import linalg
from torch import nn
from torch.hub import load_state_dict_from_url
import torch.nn.functional as F
import util, datasets
def calculate_ife(model, dataset, device, noise_distribution, n_samples=2048, batch_size=128, incept=None, data_dir=None):
if data_dir is not None:
test_loader = datasets.get_test_dataloader(dataset, batch_size, data_dir=data_dir)
else:
test_loader = datasets.get_test_dataloader(dataset, batch_size)
if incept is None:
incept = InceptionV3().to(device)
incept.eval()
start_idx = 0
img_dims = None
activations_test = np.empty((n_samples, InceptionV3.DEFAULT_DIMS))
activations_reconstructions = np.empty((n_samples, InceptionV3.DEFAULT_DIMS))
with torch.no_grad():
for batch, _ in test_loader:
img_dims = batch.shape[1:]
test_batch_noisy = torch.clone(batch).detach().to(device)
test_batch_noisy += noise_distribution.sample()[:batch.shape[0]]
test_batch_noisy = torch.clamp(test_batch_noisy, 0., 1.)
batch = batch.to(device)
test_batch_noisy = test_batch_noisy.to(device)
# RCE with noise (comparing to original)
z = model.encode(test_batch_noisy)
if isinstance(z, tuple):
z = z[0]
test_batch_reconstructed = model.decode(z)
if batch.shape[1] == 1:
# HACK: Inception expects three channels so we tile
batch = batch.repeat((1, 3, 1, 1))
test_batch_reconstructed = test_batch_reconstructed.repeat((1, 3, 1, 1))
batch_activations = incept(batch)[0].squeeze(3).squeeze(2).cpu().numpy()
reconstructed_batch_activations = incept(test_batch_reconstructed)[0].squeeze(3).squeeze(2).cpu().numpy()
activations_test[start_idx:start_idx + batch_size, :] = batch_activations
activations_reconstructions[start_idx:start_idx + batch_size, :] = reconstructed_batch_activations
start_idx = start_idx + batch_size
if start_idx >= n_samples:
break
squared_errors = (activations_reconstructions - activations_test)**2
return np.mean(squared_errors)
def calculate_fid(model, dataset, device, n_samples=2048, batch_size=128, temperature=1, incept=None, data_dir=None):
if data_dir is not None:
test_loader = datasets.get_test_dataloader(dataset, batch_size, data_dir=data_dir)
else:
test_loader = datasets.get_test_dataloader(dataset, batch_size)
activations_test = np.empty((n_samples, InceptionV3.DEFAULT_DIMS))
if incept is None:
incept = InceptionV3().to(device)
incept.eval()
start_idx = 0
img_dims = None
with torch.no_grad():
for batch, _ in test_loader:
img_dims = batch.shape[1:]
if batch.shape[1] == 1:
# HACK: Inception expects three channels so we tile
batch = batch.repeat((1, 3, 1, 1))
batch = batch.to(device)
batch_activations = incept(batch)[0].squeeze(3).squeeze(2).cpu().numpy()
activations_test[start_idx:start_idx + batch_size, :] = batch_activations
start_idx = start_idx + batch_size
if start_idx >= n_samples:
break
activations_samples = np.empty((n_samples, InceptionV3.DEFAULT_DIMS))
n_filled = 0
with torch.no_grad():
while n_filled < n_samples:
samples = model.sample(batch_size, temperature=temperature)
if len(samples.shape) == 2:
samples = samples.view(batch_size, *img_dims)
row_contains_nans = torch.any(~torch.isfinite(samples.view(batch_size, -1)), dim=1)
n_good_rows = batch_size - torch.sum(row_contains_nans)
samples = samples[~row_contains_nans]
samples = samples[:n_samples-n_filled]
if samples.shape[1] == 1:
# HACK: Inception expects three channels so we til e
samples = samples.repeat((1, 3, 1, 1))
samples = samples.to(device)
batch_activations = incept(samples)[0].squeeze(3).squeeze(2).cpu().numpy()
activations_samples[n_filled:n_filled + samples.shape[0]] = batch_activations
n_filled += samples.shape[0]
test_mu, test_cov = get_statistics_numpy(activations_test)
samples_mu, samples_cov = get_statistics_numpy(activations_samples)
fid_test_sample = calculate_frechet_distance(samples_mu, samples_cov, test_mu, test_cov)
return fid_test_sample
def calculate_fid_test(model, dataset, device, n_samples=2048, batch_size=32):
test_loader = datasets.get_test_dataloader(dataset, batch_size)
activations_test = np.empty((n_samples, InceptionV3.DEFAULT_DIMS))
incept = InceptionV3().to(device)
incept.eval()
start_idx = 0
for batch, _ in test_loader:
if batch.shape[1] == 1:
# HACK: Inception expects three channels so we tile
batch = batch.repeat((1, 3, 1, 1))
with torch.no_grad():
batch_activations = incept(batch)[0].squeeze(3).squeeze(2).cpu().numpy()
activations_test[start_idx:start_idx + batch_size, :] = batch_activations
start_idx = start_idx + batch_size
if start_idx >= n_samples:
break
train_loader = \
datasets.get_train_val_dataloaders(dataset, batch_size, p_validation=0, return_img_dim=False, return_alpha=False)[0]
activations_train = np.empty((n_samples, InceptionV3.DEFAULT_DIMS))
start_idx = 0
for batch, _ in train_loader:
if batch.shape[1] == 1:
# HACK: Inception expects three channels so we tile
batch = batch.repeat((1, 3, 1, 1))
with torch.no_grad():
batch_activations = incept(batch)[0].squeeze(3).squeeze(2).cpu().numpy()
activations_train[start_idx:start_idx + batch_size, :] = batch_activations
start_idx = start_idx + batch_size
if start_idx >= n_samples:
break
activations_samples = np.empty((n_samples, InceptionV3.DEFAULT_DIMS))
n_filled = 0
min_max_samples = np.empty((n_samples, 2))
while n_filled < n_samples:
samples = model.sample(batch_size, temperature=1)
min_max_samples[n_filled:n_filled + batch_size, 0] = torch.min(samples.view(batch_size, -1).cpu().detach(),
dim=1).values.numpy()
min_max_samples[n_filled:n_filled + batch_size, 1] = torch.max(samples.view(batch_size, -1).cpu().detach(),
dim=1).values.numpy()
if samples.shape[1] == 1:
# HACK: Inception expects three channels so we tile
samples = samples.repeat((1, 3, 1, 1))
with torch.no_grad():
batch_activations = incept(samples)[0].squeeze(3).squeeze(2).cpu().numpy()
activations_samples[n_filled:n_filled + batch_size] = batch_activations
n_filled += batch_size
train_mu, train_cov = get_statistics_numpy(activations_train)
test_mu, test_cov = get_statistics_numpy(activations_test)
samples_mu, samples_cov = get_statistics_numpy(activations_samples)
fid_test_sample = calculate_frechet_distance(samples_mu, samples_cov, test_mu, test_cov)
fid_test_train = calculate_frechet_distance(train_mu, train_cov, test_mu, test_cov)
fid_train_sample = calculate_frechet_distance(train_mu, train_cov, samples_mu, samples_cov)
print(f'FID between test and train set: {fid_test_train}')
print(f'FID between test set and generated samples: {fid_test_sample}')
print(f'FID between train set and generated samples: {fid_train_sample}')
return fid_test_train, fid_test_sample, fid_train_sample
#### NOTE: Below adapted from
# https://github.com/mseitzer/pytorch-fid/blob/master/src/pytorch_fid/fid_score.py
def get_statistics_numpy(numpy_data):
mu = np.mean(numpy_data, axis=0)
cov = np.cov(numpy_data, rowvar=False)
return mu, cov
def get_data_from_loader(dataloader, length, device):
start_idx = 0
for batch, _ in dataloader:
if start_idx == 0:
data = np.empty((length, *batch.shape[1:]))
data[start_idx:start_idx+batch.shape[0]] = batch.detach().cpu().numpy()
start_idx = start_idx + batch.shape[0]
return data
def get_inception_activations(dataloader, length, device):
# NOTE: Store in numpy array for higher precision
activations = np.empty((length, InceptionV3.DEFAULT_DIMS))
start_idx = 0
model = InceptionV3().to(device)
model.eval()
for batch, _ in dataloader:
if batch.shape[1] == 1:
# HACK: Inception expects three channels so we tile
batch = batch.repeat((1,3,1,1))
with torch.no_grad():
batch_activations = model(batch)[0].squeeze(3).squeeze(2).cpu().numpy()
activations[start_idx:start_idx+batch.shape[0]] = batch_activations
start_idx = start_idx + batch.shape[0]
return activations
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
"""Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Dougal J. Sutherland.
Params:
-- mu1 : Numpy array containing the activations of a layer of the
inception net (like returned by the function 'get_predictions')
for generated samples.
-- mu2 : The sample mean over activations, precalculated on an
representative data set.
-- sigma1: The covariance matrix over activations for generated samples.
-- sigma2: The covariance matrix over activations, precalculated on an
representative data set.
Returns:
-- : The Frechet Distance.
"""
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, \
'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, \
'Training and test covariances have different dimensions'
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return (diff.dot(diff) + np.trace(sigma1)
+ np.trace(sigma2) - 2 * tr_covmean)
#### NOTE: Below taken from
# https://github.com/mseitzer/pytorch-fid/blob/master/src/pytorch_fid/inception.py
# Inception weights ported to Pytorch from
# http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
FID_WEIGHTS_URL = 'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth' # noqa: E501
class InceptionV3(nn.Module):
"""Pretrained InceptionV3 network returning feature maps"""
DEFAULT_DIMS = 2048
# Index of default block of inception to return,
# corresponds to output of final average pooling
DEFAULT_BLOCK_INDEX = 3
# Maps feature dimensionality to their output blocks indices
BLOCK_INDEX_BY_DIM = {
64: 0, # First max pooling features
192: 1, # Second max pooling featurs
768: 2, # Pre-aux classifier features
2048: 3 # Final average pooling features
}
def __init__(self,
output_blocks=(DEFAULT_BLOCK_INDEX,),
resize_input=True,
normalize_input=True,
requires_grad=False,
use_fid_inception=True):
"""Build pretrained InceptionV3
Parameters
----------
output_blocks : list of int
Indices of blocks to return features of. Possible values are:
- 0: corresponds to output of first max pooling
- 1: corresponds to output of second max pooling
- 2: corresponds to output which is fed to aux classifier
- 3: corresponds to output of final average pooling
resize_input : bool
If true, bilinearly resizes input to width and height 299 before
feeding input to model. As the network without fully connected
layers is fully convolutional, it should be able to handle inputs
of arbitrary size, so resizing might not be strictly needed
normalize_input : bool
If true, scales the input from range (0, 1) to the range the
pretrained Inception network expects, namely (-1, 1)
requires_grad : bool
If true, parameters of the model require gradients. Possibly useful
for finetuning the network
use_fid_inception : bool
If true, uses the pretrained Inception model used in Tensorflow's
FID implementation. If false, uses the pretrained Inception model
available in torchvision. The FID Inception model has different
weights and a slightly different structure from torchvision's
Inception model. If you want to compute FID scores, you are
strongly advised to set this parameter to true to get comparable
results.
"""
super(InceptionV3, self).__init__()
self.resize_input = resize_input
self.normalize_input = normalize_input
self.output_blocks = sorted(output_blocks)
self.last_needed_block = max(output_blocks)
assert self.last_needed_block <= 3, \
'Last possible output block index is 3'
self.blocks = nn.ModuleList()
if use_fid_inception:
inception = fid_inception_v3()
else:
inception = _inception_v3(pretrained=True)
# Block 0: input to maxpool1
block0 = [
inception.Conv2d_1a_3x3,
inception.Conv2d_2a_3x3,
inception.Conv2d_2b_3x3,
nn.MaxPool2d(kernel_size=3, stride=2)
]
self.blocks.append(nn.Sequential(*block0))
# Block 1: maxpool1 to maxpool2
if self.last_needed_block >= 1:
block1 = [
inception.Conv2d_3b_1x1,
inception.Conv2d_4a_3x3,
nn.MaxPool2d(kernel_size=3, stride=2)
]
self.blocks.append(nn.Sequential(*block1))
# Block 2: maxpool2 to aux classifier
if self.last_needed_block >= 2:
block2 = [
inception.Mixed_5b,
inception.Mixed_5c,
inception.Mixed_5d,
inception.Mixed_6a,
inception.Mixed_6b,
inception.Mixed_6c,
inception.Mixed_6d,
inception.Mixed_6e,
]
self.blocks.append(nn.Sequential(*block2))
# Block 3: aux classifier to final avgpool
if self.last_needed_block >= 3:
block3 = [
inception.Mixed_7a,
inception.Mixed_7b,
inception.Mixed_7c,
nn.AdaptiveAvgPool2d(output_size=(1, 1))
]
self.blocks.append(nn.Sequential(*block3))
for param in self.parameters():
param.requires_grad = requires_grad
def forward(self, inp):
"""Get Inception feature maps
Parameters
----------
inp : torch.autograd.Variable
Input tensor of shape Bx3xHxW. Values are expected to be in
range (0, 1)
Returns
-------
List of torch.autograd.Variable, corresponding to the selected output
block, sorted ascending by index
"""
outp = []
x = inp
if self.resize_input:
x = F.interpolate(x,
size=(299, 299),
mode='bilinear',
align_corners=False)
if self.normalize_input:
x = 2 * x - 1 # Scale from range (0, 1) to range (-1, 1)
for idx, block in enumerate(self.blocks):
x = block(x)
if idx in self.output_blocks:
outp.append(x)
if idx == self.last_needed_block:
break
return outp
def _inception_v3(*args, **kwargs):
"""Wraps `torchvision.models.inception_v3`
Skips default weight inititialization if supported by torchvision version.
See https://github.com/mseitzer/pytorch-fid/issues/28.
"""
try:
version = tuple(map(int, torchvision.__version__.split('.')[:2]))
except ValueError:
# Just a caution against weird version strings
version = (0,)
if version >= (0, 6):
kwargs['init_weights'] = False
return torchvision.models.inception_v3(*args, **kwargs)
def fid_inception_v3():
"""Build pretrained Inception model for FID computation
The Inception model for FID computation uses a different set of weights
and has a slightly different structure than torchvision's Inception.
This method first constructs torchvision's Inception and then patches the
necessary parts that are different in the FID Inception model.
"""
inception = _inception_v3(num_classes=1008,
aux_logits=False,
pretrained=False)
inception.Mixed_5b = FIDInceptionA(192, pool_features=32)
inception.Mixed_5c = FIDInceptionA(256, pool_features=64)
inception.Mixed_5d = FIDInceptionA(288, pool_features=64)
inception.Mixed_6b = FIDInceptionC(768, channels_7x7=128)
inception.Mixed_6c = FIDInceptionC(768, channels_7x7=160)
inception.Mixed_6d = FIDInceptionC(768, channels_7x7=160)
inception.Mixed_6e = FIDInceptionC(768, channels_7x7=192)
inception.Mixed_7b = FIDInceptionE_1(1280)
inception.Mixed_7c = FIDInceptionE_2(2048)
state_dict = load_state_dict_from_url(FID_WEIGHTS_URL, progress=True)
inception.load_state_dict(state_dict)
return inception
class FIDInceptionA(torchvision.models.inception.InceptionA):
"""InceptionA block patched for FID computation"""
def __init__(self, in_channels, pool_features):
super(FIDInceptionA, self).__init__(in_channels, pool_features)
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch5x5 = self.branch5x5_1(x)
branch5x5 = self.branch5x5_2(branch5x5)
branch3x3dbl = self.branch3x3dbl_1(x)
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
# Patch: Tensorflow's average pool does not use the padded zero's in
# its average calculation
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
count_include_pad=False)
branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
return torch.cat(outputs, 1)
class FIDInceptionC(torchvision.models.inception.InceptionC):
"""InceptionC block patched for FID computation"""
def __init__(self, in_channels, channels_7x7):
super(FIDInceptionC, self).__init__(in_channels, channels_7x7)
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch7x7 = self.branch7x7_1(x)
branch7x7 = self.branch7x7_2(branch7x7)
branch7x7 = self.branch7x7_3(branch7x7)
branch7x7dbl = self.branch7x7dbl_1(x)
branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)
# Patch: Tensorflow's average pool does not use the padded zero's in
# its average calculation
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
count_include_pad=False)
branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
return torch.cat(outputs, 1)
class FIDInceptionE_1(torchvision.models.inception.InceptionE):
"""First InceptionE block patched for FID computation"""
def __init__(self, in_channels):
super(FIDInceptionE_1, self).__init__(in_channels)
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch3x3 = self.branch3x3_1(x)
branch3x3 = [
self.branch3x3_2a(branch3x3),
self.branch3x3_2b(branch3x3),
]
branch3x3 = torch.cat(branch3x3, 1)
branch3x3dbl = self.branch3x3dbl_1(x)
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
branch3x3dbl = [
self.branch3x3dbl_3a(branch3x3dbl),
self.branch3x3dbl_3b(branch3x3dbl),
]
branch3x3dbl = torch.cat(branch3x3dbl, 1)
# Patch: Tensorflow's average pool does not use the padded zero's in
# its average calculation
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
count_include_pad=False)
branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
return torch.cat(outputs, 1)
class FIDInceptionE_2(torchvision.models.inception.InceptionE):
"""Second InceptionE block patched for FID computation"""
def __init__(self, in_channels):
super(FIDInceptionE_2, self).__init__(in_channels)
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch3x3 = self.branch3x3_1(x)
branch3x3 = [
self.branch3x3_2a(branch3x3),
self.branch3x3_2b(branch3x3),
]
branch3x3 = torch.cat(branch3x3, 1)
branch3x3dbl = self.branch3x3dbl_1(x)
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
branch3x3dbl = [
self.branch3x3dbl_3a(branch3x3dbl),
self.branch3x3dbl_3b(branch3x3dbl),
]
branch3x3dbl = torch.cat(branch3x3dbl, 1)
# Patch: The FID Inception model uses max pooling instead of average
# pooling. This is likely an error in this specific Inception
# implementation, as other Inception models use average pooling here
# (which matches the description in the paper).
branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1)
branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
return torch.cat(outputs, 1)