-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_target_model.py
455 lines (364 loc) · 19.9 KB
/
train_target_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import argparse
import logging
import random
import shutil
import warnings
from argparse import ArgumentParser
from os.path import join
from typing import Optional, Union
import pytorch_lightning as pl
import torch
import wandb
from pytorch_lightning import Callback
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint, TQDMProgressBar, \
LearningRateMonitor, Checkpoint, StochasticWeightAveraging, ModelSummary, RichProgressBar, RichModelSummary
import numpy as np
import models
import training_utils
import utils
from datamodules import DMSDataModule
import finetuning_callbacks
from finetuning_callbacks import AnyFinetuning
from tasks import DMSTask
import analysis_utils as an
logging.basicConfig(level=logging.INFO)
# this warning pops up due to the way the data is fed in with a single PDB file for the entire batch.
# PyTorch lightning correctly infers the batch size. this is not a problem so just silence it.
warnings.filterwarnings("ignore", message="Trying to infer the `batch_size` from an ambiguous collection.")
# this warning pops up due to the way we create log directories manually
# not a concern for us, so silence it to prevent confusion for users
warnings.filterwarnings("ignore", message="Experiment logs directory .* exists and is not empty.")
# MPS is not fully supported, so no need to get a warning about it
warnings.filterwarnings("ignore", message="MPS available but not used.")
# this will only be a problem with very large datasets, not a concern for us
warnings.filterwarnings("ignore", message="Metric `SpearmanCorrcoef` will save all targets and predictions")
def init_basic_callbacks(enable_progress_bar: bool = True,
enable_simple_progress_messages: bool = False) -> list[Callback]:
callbacks = [
# ModelSummary(max_depth=-1),
RichModelSummary(max_depth=3),
LearningRateMonitor(),
]
if enable_progress_bar:
callbacks.append(TQDMProgressBar(refresh_rate=10))
# callbacks.append(RichProgressBar())
if enable_simple_progress_messages:
callbacks.append(training_utils.SimpleProgressMessages())
return callbacks
def init_callbacks(args, log_dir, dm) -> list[Callback]:
# get the basic callbacks
callbacks = init_basic_callbacks(args.enable_progress_bar, args.enable_simple_progress_messages)
# determine quantity to monitor w/ checkpoint and early stopping callbacks
# if we are using early stopping, then we also want the checkpoint callback to monitor the same quantity
# because the checkpoint callback is used to reload the checkpoint w/ best quantity
if args.es_monitor != "auto" and args.ckpt_monitor != "auto" and args.es_monitor != args.ckpt_monitor:
warnings.warn("Monitors es_monitor and ckpt_monitor are set to different values, which means we may early stop "
"at a certain epoch but use a checkpoint from a different epoch based on each monitored "
"quantity. This is probably unintentional.")
es_monitor = None
if args.early_stopping:
if args.es_monitor == "auto":
if not dm.has_val_set:
warnings.warn("Using train loss for early stopping because no validation set provided")
es_monitor = "val_loss" if dm.has_val_set else "train_loss_epoch"
else:
es_monitor = "val_loss" if args.es_monitor == "val" else "train_loss_epoch"
# ckpt monitor defaults to the same as early stopping monitor when set to auto
if args.ckpt_monitor == "auto":
ckpt_monitor = es_monitor
elif args.ckpt_monitor == "val":
ckpt_monitor = "val_loss"
elif args.ckpt_monitor == "train":
ckpt_monitor = "train_loss_epoch"
else:
raise ValueError("unsupported ckpt_monitor {}".format(args.ckpt_monitor))
# monitor the best train or val loss depending on the monitored metric
if ckpt_monitor is not None:
callbacks.append(training_utils.BestMetricLogger(metric=ckpt_monitor, mode="min"))
# set up model checkpoint and early stopping callbacks
checkpoint_callback = ModelCheckpoint(
monitor=ckpt_monitor,
mode="min",
every_n_epochs=1,
dirpath=join(log_dir, "checkpoints"),
save_last=True
)
callbacks.append(checkpoint_callback)
if args.early_stopping:
early_stop_callback = EarlyStopping(
monitor=es_monitor,
min_delta=args.es_min_delta,
patience=args.es_patience,
verbose=True,
mode='min'
)
callbacks.append(early_stop_callback)
# set up finetuning callbacks
if args.finetuning and args.finetuning_strategy == "extract":
# for the 'extract' strategy, just need to freeze the backbone layers
callbacks.append(finetuning_callbacks.BackboneFreezer())
# backbone finetuning callback
elif args.finetuning and args.finetuning_strategy == "backbone":
if args.early_stopping:
warnings.warn("Using epoch-based backbone finetuning with early stopping enabled. It is possible early "
"stopping triggers before the backbone is unfrozen, thus no finetuning would take place. "
"Consider using in combination with min_epochs so early stopping only triggers during "
"the finetuning phase, if that's what you're going for.")
finetuning_callback = AnyFinetuning(
unfreeze_backbone_at_epoch=args.unfreeze_backbone_at_epoch,
always_align_lr=args.backbone_always_align_lr,
backbone_initial_ratio_lr=args.backbone_initial_ratio_lr,
backbone_initial_lr=args.backbone_initial_lr,
should_align=True,
train_bn=args.train_bn,
verbose=False,
backbone_access_string="model.model.backbone")
callbacks.append(finetuning_callback)
# stochastic weight averaging callback
if args.swa:
swa_callback = StochasticWeightAveraging(swa_lrs=args.swa_lr, swa_epoch_start=args.swa_epoch_start)
callbacks.append(swa_callback)
return callbacks
def error_checking(args):
""" errors and warnings """
if models.Model[args.model_name].transfer_model:
if not args.finetuning:
warnings.warn("Using a transfer learning model, but finetuning is disabled. This means the whole model "
"will be trained end-to-end. There are no frozen layers or finetuning.")
def log_config(loggers, args):
""" log additional config to make processing runs easier
note this has to be logged separately for each logger because it's being logged outside the LightningModule
just logging this to wandb for now """
config = {"eval_type": an.get_eval_type(args.split_dir),
"train_size": an.get_train_size(args.split_dir),
"split_rep_num": an.get_split_rep_num(args.split_dir),
"seed": args.seed}
if args.use_wandb:
wandb_logger = loggers[0]
wandb_logger.experiment.config.update(config, allow_val_change=True)
def es_warning(ckpt_callback, es_callback):
""" early stopping vs. model checkpoint epoch warning """
ckpt_epoch = int(ckpt_callback.best_model_path.split("-")[0].split("=")[-1])
# early stopping is optional so check if None
if es_callback is not None:
es_epoch = es_callback.stopped_epoch - es_callback.patience
# this check won't be needed in future ver of Lightning https://github.com/Lightning-AI/lightning/issues/14353
if es_epoch >= 0 and (ckpt_epoch != es_epoch):
# note: also checking to make sure es_epoch != 1... because if it does == 1, then ES didn't trigger,
# so no need to compare ES epoch to ckpt epoch, ES epoch is just a placeholder in this case
warnings.warn(
f"EarlyStopping callback recorded the best epoch as epoch {es_epoch}, however, ModelCheckpoint "
f"callback recorded epoch {ckpt_epoch}. This is likely due to the min_delta, which EarlyStopping "
f"supports but ModelCheckpoint does not (Lightning should support it in future version). The "
f"model from epoch {es_epoch} has a val loss of {es_callback.best_score}, and the model from "
f"epoch {ckpt_epoch} has a val loss of {ckpt_callback.best_model_score}. Test metrics will "
f"be calculated with the ModelCheckpoint saved checkpoint from epoch {ckpt_epoch}."
)
def verify_set_seed(args):
if args.seed is None:
# you are entitled to a random seed
# if you do not specify a seed, one will be specified for you
args.seed = random.randint(100000000, 999999999)
print("Random seed not specified, using: {}".format(args.seed))
def metrics_df_to_dict(df, suffix=""):
result_dict = {}
for idx in df.index:
for col in df.columns:
key = f"metrics_{idx}_{col}{suffix}"
result_dict[key] = df.loc[idx, col]
return result_dict
def log_metrics(raw_preds, dm, log_dir, trainer, args):
predictions_d = training_utils.save_predictions(raw_preds, dm, log_dir, save_format="npy")
training_utils.save_scatterplots(dm, predictions_d, log_dir)
metrics_df = training_utils.save_metrics_custom(dm, predictions_d, log_dir)
training_utils.plot_losses(log_dir)
# log metrics_custom to wandb
if args.use_wandb and metrics_df is not None:
wandb.log(metrics_df_to_dict(metrics_df))
if args.save_last_metrics:
# saves a metric_custom_last.txt file with the metrics computed on the last checkpoint
# run the test metrics via PTL for wandb :)
raw_preds = trainer.predict(ckpt_path="last", datamodule=dm, return_predictions=True)
predictions_d = training_utils.save_predictions(raw_preds, dm, log_dir, save_format="npy", suffix="_last")
training_utils.save_scatterplots(dm, predictions_d, log_dir, suffix="_last")
metrics_df = training_utils.save_metrics_custom(dm, predictions_d, log_dir, suffix="_last")
if args.use_wandb and metrics_df is not None:
wandb.log(metrics_df_to_dict(metrics_df, suffix="_last"))
def main(args: argparse.Namespace):
error_checking(args)
verify_set_seed(args)
pl.seed_everything(args.seed)
# GPU and distributed training config
# avoid MPS because even though it is faster, it is not fully compatible with this version of PyTorch
if torch.cuda.is_available():
accelerator = "gpu"
else:
accelerator = "cpu"
# get the uuid and log directory for this run
my_uuid, log_dir = training_utils.create_log_dir(args.log_dir_base, args.uuid)
# update the args with the assigned UUID (to save to hparams file)
args.uuid = my_uuid
# save arguments to the log directory
utils.save_args(vars(args), join(log_dir, "args.txt"), ignore=["cluster", "process"])
# set up logger callbacks for training
loggers = training_utils.init_loggers(log_dir, my_uuid, args.use_wandb, args.wandb_online, args.wandb_project)
# log some config parameters for wandb to make exploring runs easier
log_config(loggers, args)
# load data and split via the datamodule
dm = DMSDataModule(**vars(args))
# create the model and task
task = DMSTask(num_tasks=dm.num_tasks,
num_tokens=dm.num_tokens,
aa_seq_len=dm.aa_seq_len,
aa_encoding_len=dm.aa_encoding_len,
seq_encoding_len=dm.seq_encoding_len,
pdb_fns=dm.unique_pdb_fns,
example_input_array=dm.example_input_array,
**vars(args))
callbacks = init_callbacks(args, log_dir, dm)
# set up wandb to log gradients, parameter histograms
if args.use_wandb and args.wandb_log_grads:
loggers[0].watch(task, log="all", log_freq=args.grad_log_freq)
# htcondor was giving me slots with more than 1 gpu, which was causing problems
# so if we are running on condor, specify devices = 1
# if running locally, use devices = auto which should select available CPU cores
devices = "auto" if args.cluster == "local" else 1
trainer: pl.Trainer = pl.Trainer.from_argparse_args(args,
default_root_dir=log_dir,
callbacks=callbacks,
logger=loggers,
accelerator=accelerator,
devices=devices)
trainer.fit(task, datamodule=dm)
# assuming there is a checkpoint callback (all target models should have this)
ckpt_callback: Optional[ModelCheckpoint] = trainer.checkpoint_callback
es_callback: Optional[EarlyStopping] = trainer.early_stopping_callback
# warn if the ckpt epoch doesn't match the es epoch (won't be needed in future ver of lightning)
es_warning(ckpt_callback, es_callback)
# run test set and save metrics and losses
test_metrics = trainer.test(ckpt_path="best", datamodule=dm)
# save metrics computed by pytorch lightning along w/ the specific checkpoint used to compute those metrics
training_utils.save_metrics_ptl(ckpt_callback.best_model_path, ckpt_callback.best_model_score, test_metrics, log_dir)
# save predictions, scatterplots, and custom metrics. plot train loss vs. val loss
raw_preds = trainer.predict(ckpt_path="best", datamodule=dm, return_predictions=True)
# log end of training metrics
log_metrics(raw_preds, dm, log_dir, trainer, args)
# delete the checkpoints folder if asked
if args.delete_checkpoints:
shutil.rmtree(join(log_dir, "checkpoints"))
def add_target_args(parent_parser):
""" args specific to target model training and finetuning (shared with ESM...) """
p = argparse.ArgumentParser(parents=[parent_parser], add_help=False)
# random seed
p.add_argument("--seed", help="random seed to use with pytorch lightning seed_everything"
"not specifying a seed will use a random seed and record it to args "
"for future runs",
default=None, type=int)
# early stopping
p.add_argument("--early_stopping", help="set to enable early stopping", action="store_true")
p.add_argument("--es_monitor", help="which loss to monitor", default="auto", choices=["train", "val", "auto"])
p.add_argument("--es_patience", help="number of epochs allowance for early stopping", type=int, default=5)
p.add_argument("--es_min_delta", help="min by which the loss must decrease to be considered an improvement",
type=float, default=0.001)
# checkpoint callback monitoring metric
# mostly meant for when early stopping = False, but still want to choose best model based on metric
p.add_argument("--ckpt_monitor", help="which loss to monitor for ckpt",
default="auto", choices=["train", "val", "auto"])
# fine tuning
p.add_argument("--finetuning", action="store_true", default=False)
p.add_argument("--finetuning_strategy", type=str, default="backbone", choices=["backbone", "extract"])
# for 'backbone' finetuning strategy
p.add_argument("--unfreeze_backbone_at_epoch", type=int, default=10)
p.add_argument("--train_bn", help="whether to train batchnorm in backbone", action="store_true")
p.add_argument("--backbone_always_align_lr", action="store_true", default=False)
p.add_argument("--backbone_initial_ratio_lr", type=float, default=0.1)
p.add_argument("--backbone_initial_lr", type=float, default=None)
# stochastic weight averaging
p.add_argument('--swa', help="set to enable stochastic weight averaging", action="store_true")
p.add_argument('--swa_epoch_start', type=int, default=None)
p.add_argument('--swa_lr', type=float, default=0.0001)
# save the metrics for the last checkpoint
p.add_argument("--save_last_metrics",
help="set to save metrics for the last checkpoint", action="store_true")
# simple progress messages instead of progress bar
p.add_argument("--enable_simple_progress_messages", help="set to enable simple progress messages",
action="store_true", default=False)
return p
if __name__ == "__main__":
parser = ArgumentParser(add_help=True)
# Program args
parser = add_target_args(parser)
# HTCondor args
parser.add_argument("--cluster",
help="cluster (when running on HTCondor)",
type=str,
default="local")
parser.add_argument("--process",
help="process (when running on HTCondor)",
type=str,
default="local")
parser.add_argument("--github_tag",
help="github tag for current run",
type=str,
default="no_github_tag")
# additional args
parser.add_argument("--log_dir_base",
help="log directory base",
type=str,
default="output/training_logs")
parser.add_argument("--uuid",
help="model uuid to resume from or custom uuid to use from scratch",
type=str,
default=None)
# wandb args
parser.add_argument('--use_wandb', action='store_true',
help="use wandb for logging")
parser.add_argument('--no_use_wandb', dest='use_wandb', action='store_false')
parser.set_defaults(use_wandb=True)
parser.add_argument("--wandb_online",
action="store_true",
default=False)
parser.add_argument("--wandb_project",
type=str,
default="metl_target")
parser.add_argument("--experiment",
type=str,
default="default",
help="dummy arg to make wandb tracking and filtering easier")
parser.add_argument("--wandb_log_grads",
default=False,
action="store_true",
help="whether to log gradients and parameter histograms to weights&biases")
parser.add_argument("--grad_log_freq",
default=500,
type=int,
help="log frequency for gradients")
parser.add_argument("--delete_checkpoints",
action="store_true",
default=False)
# add data specific args
parser = DMSDataModule.add_data_specific_args(parser)
# add all the available trainer options to argparse
# ie: now --gpus --num_nodes ... --fast_dev_run all work in the cli
parser = pl.Trainer.add_argparse_args(parser)
# figure out which model to use
# need to have this additional argument parser line to add the fromfile_prefix_chars
# this lets us specify the model_name in the file along with model specific args
parser = ArgumentParser(parents=[parser], fromfile_prefix_chars='@', add_help=False)
# special model choice "transfer_model" signifies we are loading a backbone from a checkpoint
# transfer_model_keyword = "transfer_model"
model_choices = [m.name for m in list(models.Model)] # + [transfer_model_keyword]
parser.add_argument("--model_name", type=str, choices=model_choices)
# grab the model_name
temp_args, _ = parser.parse_known_args()
# temp_args, _ = parser.parse_args()
# add task-specific args
parser = DMSTask.add_model_specific_args(parser)
# add model-specific args
add_args_op = getattr(models.Model[temp_args.model_name].cls, "add_model_specific_args", None)
if callable(add_args_op):
parser = add_args_op(parser)
# finally, make sure we can use args from file (can't do this before because it gets overwritten)
parser = ArgumentParser(parents=[parser], fromfile_prefix_chars='@', add_help=False)
parsed_args = parser.parse_args()
main(parsed_args)