-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlinear_assignment.pyx
264 lines (233 loc) · 7.83 KB
/
linear_assignment.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# coding: utf-8
from __future__ import division, unicode_literals
"""
This module contains an algorithm to solve the Linear Assignment Problem
"""
__author__ = "Will Richards"
__copyright__ = "Copyright 2011, The Materials Project"
__version__ = "1.0"
__maintainer__ = "Will Richards"
__email__ = "wrichards@mit.edu"
__date__ = "Jan 28, 2013"
import numpy as np
from libc.stdlib cimport malloc, free
from libc.math cimport fabs
cimport numpy as np
cimport cython
class LinearAssignment(object):
"""
This class finds the solution to the Linear Assignment Problem.
It finds a minimum cost matching between two sets, given a cost
matrix.
This class is an implementation of the LAPJV algorithm described in:
R. Jonker, A. Volgenant. A Shortest Augmenting Path Algorithm for
Dense and Sparse Linear Assignment Problems. Computing 38, 325-340
(1987)
Args:
costs: The cost matrix of the problem. cost[i,j] should be the
cost of matching x[i] to y[j]. The cost matrix may be
rectangular
epsilon: Tolerance for determining if solution vector is < 0
.. attribute: min_cost:
The minimum cost of the matching
.. attribute: solution:
The matching of the rows to columns. i.e solution = [1, 2, 0]
would match row 0 to column 1, row 1 to column 2 and row 2
to column 0. Total cost would be c[0, 1] + c[1, 2] + c[2, 0]
"""
def __init__(self, costs, epsilon=1e-13):
self.orig_c = np.array(costs, dtype=np.float_, copy=False, order='C')
self.nx, self.ny = self.orig_c.shape
self.n = self.ny
self.epsilon = fabs(epsilon)
#check that cost matrix is square
if self.nx > self.ny:
raise ValueError("cost matrix must have at least as many columns as rows")
if self.nx == self.ny:
self.c = self.orig_c
else:
self.c = np.zeros((self.n, self.n), dtype=np.float_)
self.c[:self.nx] = self.orig_c
#initialize solution vectors
self._x = np.empty(self.n, dtype=np.int)
self._y = np.empty(self.n, dtype=np.int)
self.min_cost = compute(self.n, self.c, self._x, self._y, self.epsilon)
self.solution = self._x[:self.nx]
@cython.boundscheck(False)
@cython.wraparound(False)
cdef np.float_t compute(int size, np.float_t[:, :] c, np.int_t[:] x, np.int_t[:] y, np.float_t eps) nogil:
# augment
cdef int i, j, k, i1, j1, f, f0, cnt, low, up, z, last, nrr
cdef int n = size
cdef bint b
cdef np.int_t * col = <np.int_t *> malloc(n * sizeof(np.int_t))
cdef np.int_t * fre = <np.int_t *> malloc(n * sizeof(np.int_t))
cdef np.int_t * pred = <np.int_t *> malloc(n * sizeof(np.int_t))
cdef np.float_t * v = <np.float_t *> malloc(n * sizeof(np.float_t))
cdef np.float_t * d = <np.float_t *> malloc(n * sizeof(np.float_t))
cdef np.float_t h, m, u1, u2, cost
for i in range(n):
x[i] = -1
# column reduction
for j from n > j >= 0:
col[j] = j
h = c[0, j]
i1 = 0
for i in range(1, n):
if c[i, j] < h:
h = c[i, j]
i1 = i
v[j] = h
if x[i1] == -1:
x[i1] = j
y[j] = i1
else:
# in the paper its x[i], but likely a typo
if x[i1] > -1:
x[i1] = -2 - x[i1]
y[j] = -1
# reduction transfer
f = -1
for i in range(n):
if x[i] == -1:
f += 1
fre[f] = i
elif x[i] < -1:
x[i] = -2 - x[i]
else:
j1 = x[i]
m = 1e300
for j in range(n):
if j != j1:
if c[i, j] - v[j] < m:
m = c[i, j] - v[j]
v[j1] = v[j1] - m
# augmenting row reduction
for cnt in range(2):
k = 0
f0 = f
f = -1
# this step isn't strictly necessary, and
# time is proportional to 1/eps in the worst case,
# so break early by keeping track of nrr
nrr = 0
while k <= f0:
nrr += 1
i = fre[k]
k += 1
u1 = c[i, 0] - v[0]
j1 = 0
u2 = 1e300
for j in range(1, n):
h = c[i, j] - v[j]
if h < u2:
if h >= u1:
u2 = h
j2 = j
else:
u2 = u1
u1 = h
j2 = j1
j1 = j
i1 = y[j1]
if u1 + eps < u2 and nrr < n * k:
v[j1] = v[j1] - u2 + u1
elif i1 > -1 and nrr < n * k:
j1 = j2
i1 = y[j1]
if i1 > -1:
if u1 + eps < u2 and nrr < n * k:
k -= 1
fre[k] = i1
else:
f += 1
fre[f] = i1
x[i] = j1
y[j1] = i
# augmentation
f0 = f
for f in range(f0 + 1):
i1 = fre[f]
low = 0
up = 0
for j in range(n):
d[j] = c[i1, j] - v[j]
pred[j] = i1
while True:
# the pascal code ends when a single augmentation is found
# really we need to get back to the for f in range(f0+1) loop
b = False
if up == low:
last = low-1
m = d[col[up]]
up = up + 1
for k in range(up, n):
j = col[k]
h = d[j]
if h <= m + eps:
if h + eps < m:
up = low
m = h
col[k] = col[up]
col[up] = j
up = up + 1
for z in range(low, up):
j = col[z]
if y[j] == -1:
# augment
for k in range(last+1):
j1 = col[k]
v[j1] = v[j1] + d[j1] - m
while True:
i = pred[j]
y[j] = i
k = j
j = x[i]
x[i] = k
if i == i1:
b = True
break
break
if b:
break
j1 = col[low]
low = low + 1
i = y[j1]
u1 = c[i, j1] - v[j1] - m
for k in range(up, n):
j = col[k]
h = c[i, j] - v[j] - u1
if h + eps < d[j]:
d[j] = h
pred[j] = i
if fabs(h - m) < eps:
if y[j] == -1:
# augment
for k in range(last+1):
j1 = col[k]
v[j1] = v[j1] + d[j1] - m
while True:
i = pred[j]
y[j] = i
k = j
j = x[i]
x[i] = k
if i == i1:
b = True
break
break
else:
col[k] = col[up]
col[up] = j
up = up + 1
if b:
break
cost = 0
for i in range(n):
cost += c[i, x[i]]
free(<void *>col)
free(<void *>fre)
free(<void *>pred)
free(<void *>v)
free(<void *>d)
return cost