forked from aloctavodia/Doing_bayesian_data_analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
08_BernTwoMetropolis.py
170 lines (143 loc) · 6.56 KB
/
08_BernTwoMetropolis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
"""
Use this program as a template for experimenting with the Metropolis algorithm
applied to 2 parameters called theta1,theta2 defined on the domain [0,1]x[0,1].
"""
from __future__ import division
import numpy as np
from scipy.stats import beta
import matplotlib.pyplot as plt
plt.style.use('seaborn-darkgrid')
# Define the likelihood function.
# The input argument is a vector: theta = [theta1 , theta2]
def likelihood(theta):
# Data are constants, specified here:
z1, N1, z2, N2 = 5, 7, 2, 7
likelihood = (theta[0]**z1 * (1-theta[0])**(N1-z1)
* theta[1]**z2 * (1-theta[1])**(N2-z2))
return likelihood
# Define the prior density function.
# The input argument is a vector: theta = [theta1 , theta2]
def prior(theta):
# Here's a beta-beta prior:
a1, b1, a2, b2 = 3, 3, 3, 3
prior = beta.pdf(theta[0], a1, b1) * beta.pdf(theta[1], a2, b2)
return prior
# Define the relative probability of the target distribution, as a function
# of theta. The input argument is a vector: theta = [theta1 , theta2].
# For our purposes, the value returned is the UNnormalized posterior prob.
def target_rel_prob(theta):
if ((theta >= 0.0).all() & (theta <= 1.0).all()):
target_rel_probVal = likelihood(theta) * prior(theta)
else:
# This part is important so that the Metropolis algorithm
# never accepts a jump to an invalid parameter value.
target_rel_probVal = 0.0
return target_rel_probVal
# if ( all( theta >= 0.0 ) & all( theta <= 1.0 ) ) {
# target_rel_probVal = likelihood( theta ) * prior( theta )
# Specify the length of the trajectory, i.e., the number of jumps to try:
traj_length = 5000 # arbitrary large number
# Initialize the vector that will store the results.
trajectory = np.zeros((traj_length, 2))
# Specify where to start the trajectory
trajectory[0, ] = [0.50, 0.50] # arbitrary start values of the two param's
# Specify the burn-in period.
burn_in = int(np.ceil(.1 * traj_length)) # arbitrary number
# Initialize accepted, rejected counters, just to monitor performance.
n_accepted = 0
n_rejected = 0
# Specify the seed, so the trajectory can be reproduced.
np.random.seed(47405)
# Specify the covariance matrix for multivariate normal proposal distribution.
n_dim, sd1, sd2 = 2, 0.2, 0.2
covar_mat = [[sd1**2, 0], [0, sd2**2]]
# Now generate the random walk. step is the step in the walk.
for step in range(traj_length-1):
current_position = trajectory[step, ]
# Use the proposal distribution to generate a proposed jump.
# The shape and variance of the proposal distribution can be changed
# to whatever you think is appropriate for the target distribution.
proposed_jump = np.random.multivariate_normal(mean=np.zeros((n_dim)),
cov=covar_mat)
# Compute the probability of accepting the proposed jump.
prob_accept = np.minimum(1, target_rel_prob(current_position + proposed_jump)
/ target_rel_prob(current_position))
# Generate a random uniform value from the interval [0,1] to
# decide whether or not to accept the proposed jump.
if np.random.rand() < prob_accept:
# accept the proposed jump
trajectory[step+1, ] = current_position + proposed_jump
# increment the accepted counter, just to monitor performance
if step > burn_in:
n_accepted += 1
else:
# reject the proposed jump, stay at current position
trajectory[step+1, ] = current_position
# increment the rejected counter, just to monitor performance
if step > burn_in:
n_rejected += 1
# End of Metropolis algorithm.
#-----------------------------------------------------------------------
# Begin making inferences by using the sample generated by the
# Metropolis algorithm.
# Extract just the post-burnIn portion of the trajectory.
accepted_traj = trajectory[burn_in:]
# Compute the means of the accepted points.
mean_traj = np.mean(accepted_traj, axis=0)
# Compute the standard deviations of the accepted points.
stdTraj = np.std(accepted_traj, axis=0)
# Plot the trajectory of the last 500 sampled values.
plt.plot(accepted_traj[:,0], accepted_traj[:,1], marker='o', alpha=0.3)
plt.xlim(0, 1)
plt.ylim(0, 1)
plt.xlabel(r'$\theta1$')
plt.ylabel(r'$\theta2$')
# Display means in plot.
plt.plot(0, label='M = %.3f, %.3f' % (mean_traj[0], mean_traj[1]), alpha=0.0)
# Display rejected/accepted ratio in the plot.
plt.plot(0, label=r'$N_{pro}=%s$ $\frac{N_{acc}}{N_{pro}} = %.3f$' % (len(accepted_traj), (n_accepted/len(accepted_traj))), alpha=0)
# Evidence for model, p(D).
# Compute a,b parameters for beta distribution that has the same mean
# and stdev as the sample from the posterior. This is a useful choice
# when the likelihood function is binomial.
a = mean_traj * ((mean_traj*(1-mean_traj)/stdTraj**2) - np.ones(n_dim))
b = (1-mean_traj) * ( (mean_traj*(1-mean_traj)/stdTraj**2) - np.ones(n_dim))
# For every theta value in the posterior sample, compute
# beta.pdf(theta, a, b) / likelihood(theta) * prior(theta)
# This computation assumes that likelihood and prior are properly normalized,
# i.e., not just relative probabilities.
wtd_evid = np.zeros(np.shape(accepted_traj)[0])
for idx in range(np.shape(accepted_traj)[0]):
wtd_evid[idx] = (beta.pdf(accepted_traj[idx,0],a[0],b[0] )
* beta.pdf(accepted_traj[idx,1],a[1],b[1]) /
(likelihood(accepted_traj[idx,]) * prior(accepted_traj[idx,])))
p_data = 1 / np.mean(wtd_evid)
# Display p(D) in the graph
plt.plot(0, label='p(D) = %.3e' % p_data, alpha=0)
plt.legend(loc='upper left')
plt.savefig('Figure_8.3.png')
# Estimate highest density region by evaluating posterior at each point.
accepted_traj = trajectory[burn_in:]
npts = np.shape(accepted_traj)[0]
post_prob = np.zeros((npts))
for ptIdx in range(npts):
post_prob[ptIdx] = target_rel_prob(accepted_traj[ptIdx,])
# Determine the level at which credmass points are above:
credmass = 0.95
waterline = np.percentile(post_prob, (credmass))
HDI_points = accepted_traj[post_prob > waterline, ]
plt.figure()
plt.plot(HDI_points[:,0], HDI_points[:,1], 'C1o')
plt.xlim(0,1)
plt.ylim(0,1)
plt.xlabel(r'$\theta1$')
plt.ylabel(r'$\theta2$')
# Display means in plot.
plt.plot(0, label='M = %.3f, %.3f' % (mean_traj[0], mean_traj[1]), alpha=0.0)
# Display rejected/accepted ratio in the plot.
plt.plot(0, label=r'$N_{pro}=%s$ $\frac{N_{acc}}{N_{pro}} = %.3f$' % (len(accepted_traj), (n_accepted/len(accepted_traj))), alpha=0)
# Display p(D) in the graph
plt.plot(0, label='p(D) = %.3e' % p_data, alpha=0)
plt.legend(loc='upper left')
plt.savefig('Figure_8.3_HDI.png')
plt.show()