This project mainly consists of the following modules: prediction, cost_function, vehicle and trajectory. This program can easily run to 20 miles or more, or even 30 miles, as shown in the screenshot below.
This module contains prediction_front, prediction_left_right two modules.they are used to predict the useful informations of of the surrounding vehicles. they include the speed v and the distance diff_s from our vehicle
This fuction contains three basic function to calculate cost. cost_buff , cost_crash, cost_save_time.
-
cost_buff cost_buff = (1/diff_s)*weight_buff. This fuction used to punish traffic jams, The smaller the diff_s, the greater the cost value.
-
cost_save_time cost_save_time = weight_save_time*(max_v - front_v)/max_v. This fuction used to punish this situation that front vehicle moving slowly.The smaller the front vehicle's v, the greater the cost value.
-
cost_crash cost_crash = (20 - front/after_diff_s)*weighe_crash. This fuction used to punish the crash when change_lane when other cars are within a relatively short distance. The nearer, the more dangerous, the biger the cost_crash.
Use the idea of finite states maching. I've chosen three basic states here. keep_lane, change_left, change_right. The keep_lane is default Setting.
- When there is no car within 30 meters, just keep lane and accelerate the car to its maximum speed.
- when prediction_front tells there is a car within 30 meters. Slow down according to the speed of the car ahead.
- Start calculating the total cost in each state. total cost = cost_buff + cost_save_time + cost_crash . Then select the min cost state.
- If keep_lane, keep a safe distance of about 30 meters to follow the front car.
- If change_left, change the current lane to the left, that is lane = lane-1.
- If change_right, change the current lane to the right, that is lane = lane+1.
Helpful hints: plus additional cost 10 to the total cost of change lane,helps prevent the vehicle from swinging from lane to side lane when the cost_change_left , cost_change_right and cost_keep_lane's difference is not that big.
use spline to fitting trajectory. Here use 5 points to fit trajectory. In order to ensure the smoothness and continuity of the trajectory, the first two points select the last point and fifth to last from the previous trajectory.
- If keep_lane The last three points select the middle point of the road 30,40,50 meters in front of the car. This will more help car stay in the middle of the lane while following the front car.
- If chenge_left or change_right The last three points select the middle point of the road 50,70,90 meters in front of the car. this will help to reduce jerk when change lane.
Helpful hints: Choosing the fifth point from the bottom relative to the second from the bottom is very helpful in staying on the center line when follow the front car.
Self-Driving Car Engineer Nanodegree Program
You can download the Term3 Simulator which contains the Path Planning Project from the [releases tab (https://github.com/udacity/self-driving-car-sim/releases/tag/T3_v1.2).
In this project your goal is to safely navigate around a virtual highway with other traffic that is driving +-10 MPH of the 50 MPH speed limit. You will be provided the car's localization and sensor fusion data, there is also a sparse map list of waypoints around the highway. The car should try to go as close as possible to the 50 MPH speed limit, which means passing slower traffic when possible, note that other cars will try to change lanes too. The car should avoid hitting other cars at all cost as well as driving inside of the marked road lanes at all times, unless going from one lane to another. The car should be able to make one complete loop around the 6946m highway. Since the car is trying to go 50 MPH, it should take a little over 5 minutes to complete 1 loop. Also the car should not experience total acceleration over 10 m/s^2 and jerk that is greater than 10 m/s^3.
Each waypoint in the list contains [x,y,s,dx,dy] values. x and y are the waypoint's map coordinate position, the s value is the distance along the road to get to that waypoint in meters, the dx and dy values define the unit normal vector pointing outward of the highway loop.
The highway's waypoints loop around so the frenet s value, distance along the road, goes from 0 to 6945.554.
- Clone this repo.
- Make a build directory:
mkdir build && cd build
- Compile:
cmake .. && make
- Run it:
./path_planning
.
Here is the data provided from the Simulator to the C++ Program
["x"] The car's x position in map coordinates
["y"] The car's y position in map coordinates
["s"] The car's s position in frenet coordinates
["d"] The car's d position in frenet coordinates
["yaw"] The car's yaw angle in the map
["speed"] The car's speed in MPH
//Note: Return the previous list but with processed points removed, can be a nice tool to show how far along the path has processed since last time.
["previous_path_x"] The previous list of x points previously given to the simulator
["previous_path_y"] The previous list of y points previously given to the simulator
["end_path_s"] The previous list's last point's frenet s value
["end_path_d"] The previous list's last point's frenet d value
["sensor_fusion"] A 2d vector of cars and then that car's [car's unique ID, car's x position in map coordinates, car's y position in map coordinates, car's x velocity in m/s, car's y velocity in m/s, car's s position in frenet coordinates, car's d position in frenet coordinates.
-
The car uses a perfect controller and will visit every (x,y) point it recieves in the list every .02 seconds. The units for the (x,y) points are in meters and the spacing of the points determines the speed of the car. The vector going from a point to the next point in the list dictates the angle of the car. Acceleration both in the tangential and normal directions is measured along with the jerk, the rate of change of total Acceleration. The (x,y) point paths that the planner recieves should not have a total acceleration that goes over 10 m/s^2, also the jerk should not go over 50 m/s^3. (NOTE: As this is BETA, these requirements might change. Also currently jerk is over a .02 second interval, it would probably be better to average total acceleration over 1 second and measure jerk from that.
-
There will be some latency between the simulator running and the path planner returning a path, with optimized code usually its not very long maybe just 1-3 time steps. During this delay the simulator will continue using points that it was last given, because of this its a good idea to store the last points you have used so you can have a smooth transition. previous_path_x, and previous_path_y can be helpful for this transition since they show the last points given to the simulator controller with the processed points already removed. You would either return a path that extends this previous path or make sure to create a new path that has a smooth transition with this last path.
A really helpful resource for doing this project and creating smooth trajectories was using http://kluge.in-chemnitz.de/opensource/spline/, the spline function is in a single hearder file is really easy to use.
- cmake >= 3.5
- All OSes: click here for installation instructions
- make >= 4.1
- Linux: make is installed by default on most Linux distros
- Mac: install Xcode command line tools to get make
- Windows: Click here for installation instructions
- gcc/g++ >= 5.4
- Linux: gcc / g++ is installed by default on most Linux distros
- Mac: same deal as make - [install Xcode command line tools]((https://developer.apple.com/xcode/features/)
- Windows: recommend using MinGW
- uWebSockets
- Run either
install-mac.sh
orinstall-ubuntu.sh
. - If you install from source, checkout to commit
e94b6e1
, i.e.git clone https://github.com/uWebSockets/uWebSockets cd uWebSockets git checkout e94b6e1
- Run either
We've purposefully kept editor configuration files out of this repo in order to keep it as simple and environment agnostic as possible. However, we recommend using the following settings:
- indent using spaces
- set tab width to 2 spaces (keeps the matrices in source code aligned)
Please (do your best to) stick to Google's C++ style guide.
Note: regardless of the changes you make, your project must be buildable using cmake and make!
Help your fellow students!
We decided to create Makefiles with cmake to keep this project as platform agnostic as possible. Similarly, we omitted IDE profiles in order to ensure that students don't feel pressured to use one IDE or another.
However! I'd love to help people get up and running with their IDEs of choice. If you've created a profile for an IDE that you think other students would appreciate, we'd love to have you add the requisite profile files and instructions to ide_profiles/. For example if you wanted to add a VS Code profile, you'd add:
- /ide_profiles/vscode/.vscode
- /ide_profiles/vscode/README.md
The README should explain what the profile does, how to take advantage of it, and how to install it.
Frankly, I've never been involved in a project with multiple IDE profiles before. I believe the best way to handle this would be to keep them out of the repo root to avoid clutter. My expectation is that most profiles will include instructions to copy files to a new location to get picked up by the IDE, but that's just a guess.
One last note here: regardless of the IDE used, every submitted project must still be compilable with cmake and make./
A well written README file can enhance your project and portfolio. Develop your abilities to create professional README files by completing this free course.