-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathschedule.py
51 lines (43 loc) · 1.49 KB
/
schedule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
import torch.nn as nn
import torch_geometric.nn as pyg_nn
import torch_geometric.data as pyg_data
class TrafficGNN(nn.Module):
def __init__(self):
super(TrafficGNN, self).__init__()
self.conv1 = pyg_nn.GraphConv(16, 32)
self.conv2 = pyg_nn.GraphConv(32, 64)
self.fc1 = nn.Linear(64, 32)
self.fc2 = nn.Linear(32, 1)
def forward(self, data):
x, edge_index = data.x, data.edge_index
x = torch.relu(self.conv1(x, edge_index))
x = torch.relu(self.conv2(x, edge_index))
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
# Create a dataset class for the traffic data
class TrafficDataset(pyg_data.Dataset):
def __init__(self, data_list):
self.data_list = data_list
def __len__(self):
return len(self.data_list)
def __getitem__(self, idx):
data = self.data_list[idx]
return data
# Create a data loader for the traffic data
data_list = [...] # list of traffic data
dataset = TrafficDataset(data_list)
data_loader = pyg_data.DataLoader(dataset, batch_size=32, shuffle=True)
# Train the graph neural network
model = TrafficGNN()
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
for epoch in range(100):
for data in data_loader:
optimizer.zero_grad()
output = model(data)
loss = criterion(output, data.y)
loss.backward()
optimizer.step()
print(f'Epoch {epoch+1}, Loss: {loss.item()}')