-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpath_planner.py
332 lines (268 loc) · 9.22 KB
/
path_planner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
from operator import add
import typing
# from scipy.spatial import distance
from scipy.spatial import ConvexHull
import numpy as np
from nest_info import Coordinate, DeliverySite, NestInfo
import math
import numpy as np
from sys import maxsize
import matplotlib.pyplot as plt
def get_path_length(path: typing.List["tuple"]) -> int:
path_steps = np.diff(path, axis=0)
return np.sum(np.linalg.norm(path_steps, axis=1))
show_animation = True
def distance(p1, p2):
return math.sqrt((p2[0] - p1[0])**2 + (p2[1] - p1[1])**2)
def closest(pt, others):
return min(others, key = lambda i: distance(pt, i))
def even_select(N, M):
if M > N/2:
q, r = divmod(N, N-M)
indices = [q*i + min(i, r) for i in range(N-M)]
else:
q, r = divmod(N, M)
indices = [q*i + min(i, r) for i in range(M)]
return indices
class State:
def __init__(self, x, y):
self.x = x
self.y = y
self.parent = None
self.state = "."
self.t = "new" # tag for state
self.h = 0
self.k = 0
def cost(self, state):
if self.state == "#" or state.state == "#":
return maxsize
return math.sqrt(math.pow((self.x - state.x), 2) +
math.pow((self.y - state.y), 2))
def set_state(self, state):
if state not in ["s", ".", "#", "e", "*"]:
return
self.state = state
class Map:
def __init__(self, row, col):
self.row = row
self.col = col
self.map = self.init_map()
def init_map(self):
map_list = []
for i in range(self.row):
tmp = []
for j in range(self.col):
tmp.append(State(i, j))
map_list.append(tmp)
return map_list
def get_neighbors(self, state):
state_list = []
for i in [-1, 0, 1]:
for j in [-1, 0, 1]:
if i == 0 and j == 0:
continue
if state.x + i < 0 or state.x + i >= self.row:
continue
if state.y + j < 0 or state.y + j >= self.col:
continue
state_list.append(self.map[state.x + i][state.y + j])
return state_list
def set_obstacle(self, point_list):
for x, y in point_list:
if x < 0 or x >= self.row or y < 0 or y >= self.col:
continue
self.map[x][y].set_state("#")
class Dstar:
def __init__(self, maps):
self.map = maps
self.open_list = set()
def process_state(self):
x = self.min_state()
if x is None:
return -1
k_old = self.get_kmin()
self.remove(x)
if k_old < x.h:
for y in self.map.get_neighbors(x):
if y.h <= k_old and x.h > y.h + x.cost(y):
x.parent = y
x.h = y.h + x.cost(y)
elif k_old == x.h:
for y in self.map.get_neighbors(x):
if y.t == "new" or y.parent == x and y.h != x.h + x.cost(y) \
or y.parent != x and y.h > x.h + x.cost(y):
y.parent = x
self.insert(y, x.h + x.cost(y))
else:
for y in self.map.get_neighbors(x):
if y.t == "new" or y.parent == x and y.h != x.h + x.cost(y):
y.parent = x
self.insert(y, x.h + x.cost(y))
else:
if y.parent != x and y.h > x.h + x.cost(y):
self.insert(y, x.h)
else:
if y.parent != x and x.h > y.h + x.cost(y) \
and y.t == "close" and y.h > k_old:
self.insert(y, y.h)
return self.get_kmin()
def min_state(self):
if not self.open_list:
return None
min_state = min(self.open_list, key=lambda x: x.k)
return min_state
def get_kmin(self):
if not self.open_list:
return -1
k_min = min([x.k for x in self.open_list])
return k_min
def insert(self, state, h_new):
if state.t == "new":
state.k = h_new
elif state.t == "open":
state.k = min(state.k, h_new)
elif state.t == "close":
state.k = min(state.h, h_new)
state.h = h_new
state.t = "open"
self.open_list.add(state)
def remove(self, state):
if state.t == "open":
state.t = "close"
self.open_list.remove(state)
def modify_cost(self, x):
if x.t == "close":
self.insert(x, x.parent.h + x.cost(x.parent))
def run(self, start, end):
rx = []
ry = []
self.insert(end, 0.0)
while True:
self.process_state()
if start.t == "close":
break
start.set_state("s")
s = start
s = s.parent
s.set_state("e")
tmp = start
while tmp != end:
tmp.set_state("*")
rx.append(tmp.x)
ry.append(tmp.y)
if show_animation:
plt.plot(rx, ry, "-r")
plt.pause(0.01)
if tmp.parent.state == "#":
self.modify(tmp)
continue
tmp = tmp.parent
tmp.set_state("e")
return rx, ry
def modify(self, state):
self.modify_cost(state)
while True:
k_min = self.process_state()
if k_min >= state.h:
break
def when_inside(goal, o1_ar,ox_1, oy_1, ox_2, oy_2):
path_array, temp_path=[], []
hull = ConvexHull(o1_ar)
start = [50, 26]
# find shortest
temp_goal=closest(goal, o1_ar[hull.vertices])
print(temp_goal)
tup=[(i, j) for i, j in zip(ox_1, oy_1)]
tup.remove((temp_goal[0], temp_goal[1]))
m = Map(100, 100)
m.set_obstacle(tup)
# print(temp_goal)
start = m.map[start[0]][start[1]]
end = m.map[temp_goal[0]][temp_goal[1]]
# print(start.x, start.y)
# print(end.x, end.y)
dstar = Dstar(m)
rx, ry = dstar.run(start, end)
for l in range(len(rx)):
path_array.append([rx[l],ry[l]])
m = Map(100, 100)
m.set_obstacle([(i, j) for i, j in zip(ox_2, oy_2)])
start_1 = temp_goal
start = m.map[start_1[0]][start_1[1]]
# print(start.x, start.y)
end = m.map[goal[0]][goal[1]]
dstar = Dstar(m)
rx, ry = dstar.run(start, end)
for l in range(len(rx)):
temp_path.append([rx[l],ry[l]])
# outside outer set the outer as an obstacle
temp_path.append(goal)
total_dum=path_array+temp_path
if get_path_length(total_dum)>50:
print("s")
else:
path_array=total_dum
return path_array
class PathPlanner:
def __init__(self, nest_info: NestInfo, delivery_sites: typing.List["DeliverySite"]):
self.nest_info: NestInfo = nest_info
self.delivery_sites: typing.List["DeliverySite"] = delivery_sites
def plan_paths(self):
o1, o2=[], []
ox_1, oy_1, ox_2, oy_2 = [], [], [], []
data = np.load('risk_zones.npy')
for i in range(len(data)):
for j in range(len(data[0])):
if data[i][j]==2:
ox_2.append(i)
oy_2.append(j)
o2.append([i,j])
elif data[i][j]==1:
ox_1.append(i)
oy_1.append(j)
o1.append([i,j])
o1_ar=np.array(o1)
hull = ConvexHull(o1_ar)
for site in self.delivery_sites:
print(site)
path_array=[]
path_array2=[]
flag_1=0
temp_path=[]
flag_2=0
total_dum=[]
# for site in self.delivery_sites:
m = Map(100, 100)
start = [50, 26]
goal = [site.coord.e, site.coord.n]
print(goal)
# inside outer
if goal in o1:
path_array=when_inside(goal, o1_ar, ox_1, oy_1, ox_2, oy_2)
else:
if distance(start, goal)==50:
start = m.map[start[0]][start[1]]
end = m.map[goal[0]][goal[1]]
dstar = Dstar(m)
else:
m.set_obstacle([(i, j) for i, j in zip(ox_1, oy_1)])
start = m.map[start[0]][start[1]]
end = m.map[goal[0]][goal[1]]
dstar = Dstar(m)
rx, ry = dstar.run(start, end)
for l in range(len(rx)):
path_array.append([rx[l],ry[l]])
path_array.append(goal)
idx = np.round(np.linspace(0, len(path_array) - 1, 10)).astype(int)
for s in idx:
path_array2.append(path_array[s])
# path_array.append(goal)
path_coords = [Coordinate(arr[0], arr[1]) for arr in path_array]
path_steps = np.diff(path_coords, axis=0)
# print(path_steps)
# Once you have a solution for the site - populate it like this:
print("--------")
path_length = get_path_length(path_array)
print(path_length)
print("-------")
site.set_path(path_coords)