-
Notifications
You must be signed in to change notification settings - Fork 0
/
2018-03-21.html
1076 lines (604 loc) · 30.4 KB
/
2018-03-21.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html class="theme-next pisces use-motion" lang="zh-Hans">
<head>
<!-- hexo-inject:begin --><!-- hexo-inject:end --><meta charset="UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta name="theme-color" content="#222">
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<link href="/lib/fancybox/source/jquery.fancybox.css?v=2.1.5" rel="stylesheet" type="text/css" />
<link href="//fonts.googleapis.com/css?family=Lato:300,300italic,400,400italic,700,700italic&subset=latin,latin-ext" rel="stylesheet" type="text/css">
<link href="/lib/font-awesome/css/font-awesome.min.css?v=4.6.2" rel="stylesheet" type="text/css" />
<link href="/css/main.css?v=5.1.2" rel="stylesheet" type="text/css" />
<meta name="keywords" content="NLP,深度学习,AAAI,Dialogue Generation," />
<link rel="shortcut icon" type="image/x-icon" href="/favicon.ico?v=5.1.2" />
<meta name="description" content="AAAI-18 Neural Response Generation with Dynamic Vocabularies PDF 这是我本周要讲的论文,发表在18年AAAI会议上。本文针对采用静态词表解码容易生成不相关回复以及解码效率过低的问题,提出了使用动态词表解码来解决。 Motivation shortcomings(open domain conversation): wor">
<meta name="keywords" content="NLP,深度学习,AAAI,Dialogue Generation">
<meta property="og:type" content="article">
<meta property="og:title" content="Neural Response Generation with Dynamic Vocabularies">
<meta property="og:url" content="http://luxingwu.com/2018-03-21.html">
<meta property="og:site_name" content="宫悟桑的小屋">
<meta property="og:description" content="AAAI-18 Neural Response Generation with Dynamic Vocabularies PDF 这是我本周要讲的论文,发表在18年AAAI会议上。本文针对采用静态词表解码容易生成不相关回复以及解码效率过低的问题,提出了使用动态词表解码来解决。 Motivation shortcomings(open domain conversation): wor">
<meta property="og:locale" content="zh-Hans">
<meta property="og:image" content="http://luxingwu.com/2018-03-21.html/01.png">
<meta property="og:image" content="http://luxingwu.com/2018-03-21.html/02.png">
<meta property="og:image" content="http://luxingwu.com/2018-03-21.html/03.png">
<meta property="og:image" content="http://luxingwu.com/2018-03-21.html/04.png">
<meta property="og:image" content="http://luxingwu.com/2018-03-21.html/05.png">
<meta property="og:image" content="http://luxingwu.com/2018-03-21.html/06.png">
<meta property="og:image" content="http://luxingwu.com/2018-03-21.html/07.png">
<meta property="og:image" content="http://luxingwu.com/2018-03-21.html/08.png">
<meta property="og:image" content="http://luxingwu.com/2018-03-21.html/09.png">
<meta property="og:image" content="http://luxingwu.com/2018-03-21.html/10.png">
<meta property="og:image" content="http://luxingwu.com/2018-03-21.html/11.png">
<meta property="og:image" content="http://luxingwu.com/2018-03-21.html/12.png">
<meta property="og:image" content="http://luxingwu.com/2018-03-21.html/13.png">
<meta property="og:image" content="http://luxingwu.com/2018-03-21.html/14.png">
<meta property="og:updated_time" content="2018-05-06T08:50:51.076Z">
<meta name="twitter:card" content="summary">
<meta name="twitter:title" content="Neural Response Generation with Dynamic Vocabularies">
<meta name="twitter:description" content="AAAI-18 Neural Response Generation with Dynamic Vocabularies PDF 这是我本周要讲的论文,发表在18年AAAI会议上。本文针对采用静态词表解码容易生成不相关回复以及解码效率过低的问题,提出了使用动态词表解码来解决。 Motivation shortcomings(open domain conversation): wor">
<meta name="twitter:image" content="http://luxingwu.com/2018-03-21.html/01.png">
<script type="text/javascript" id="hexo.configurations">
var NexT = window.NexT || {};
var CONFIG = {
root: '/',
scheme: 'Pisces',
sidebar: {"position":"left","display":"post","offset":12,"offset_float":12,"b2t":false,"scrollpercent":false,"onmobile":false},
fancybox: true,
tabs: true,
motion: true,
duoshuo: {
userId: '0',
author: '博主'
},
algolia: {
applicationID: '',
apiKey: '',
indexName: '',
hits: {"per_page":10},
labels: {"input_placeholder":"Search for Posts","hits_empty":"We didn't find any results for the search: ${query}","hits_stats":"${hits} results found in ${time} ms"}
}
};
</script>
<link rel="canonical" href="http://luxingwu.com/2018-03-21.html"/>
<title>Neural Response Generation with Dynamic Vocabularies | 宫悟桑的小屋</title><!-- hexo-inject:begin --><!-- hexo-inject:end -->
</head>
<body itemscope itemtype="http://schema.org/WebPage" lang="zh-Hans">
<!-- hexo-inject:begin --><!-- hexo-inject:end --><div class="container sidebar-position-left page-post-detail ">
<div class="headband"></div>
<header id="header" class="header" itemscope itemtype="http://schema.org/WPHeader">
<div class="header-inner"><div class="site-brand-wrapper">
<div class="site-meta ">
<div class="custom-logo-site-title">
<a href="/" class="brand" rel="start">
<span class="logo-line-before"><i></i></span>
<span class="site-title">宫悟桑的小屋</span>
<span class="logo-line-after"><i></i></span>
</a>
</div>
<p class="site-subtitle"></p>
</div>
<div class="site-nav-toggle">
<button>
<span class="btn-bar"></span>
<span class="btn-bar"></span>
<span class="btn-bar"></span>
</button>
</div>
</div>
<nav class="site-nav">
<ul id="menu" class="menu">
<li class="menu-item menu-item-home">
<a href="/" rel="section">
<i class="menu-item-icon fa fa-fw fa-home"></i> <br />
首页
</a>
</li>
<li class="menu-item menu-item-archives">
<a href="/archives/" rel="section">
<i class="menu-item-icon fa fa-fw fa-archive"></i> <br />
归档
</a>
</li>
<li class="menu-item menu-item-tags">
<a href="/tags/" rel="section">
<i class="menu-item-icon fa fa-fw fa-tags"></i> <br />
标签
</a>
</li>
<li class="menu-item menu-item-categories">
<a href="/categories/" rel="section">
<i class="menu-item-icon fa fa-fw fa-th"></i> <br />
分类
</a>
</li>
</ul>
</nav>
</div>
</header>
<main id="main" class="main">
<div class="main-inner">
<div class="content-wrap">
<div id="content" class="content">
<div id="posts" class="posts-expand">
<article class="post post-type-normal" itemscope itemtype="http://schema.org/Article">
<div class="post-block">
<link itemprop="mainEntityOfPage" href="http://luxingwu.com/2018-03-21.html">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="name" content="luxingwu">
<meta itemprop="description" content="">
<meta itemprop="image" content="/uploads/headimage.png">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="宫悟桑的小屋">
</span>
<header class="post-header">
<h1 class="post-title" itemprop="name headline">Neural Response Generation with Dynamic Vocabularies</h1>
<div class="post-meta">
<span class="post-time">
<span class="post-meta-item-icon">
<i class="fa fa-calendar-o"></i>
</span>
<span class="post-meta-item-text">发表于</span>
<time title="创建于" itemprop="dateCreated datePublished" datetime="2018-03-21T12:12:38+08:00">
2018-03-21
</time>
</span>
<span class="post-category" >
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-folder-o"></i>
</span>
<span class="post-meta-item-text">分类于</span>
<span itemprop="about" itemscope itemtype="http://schema.org/Thing">
<a href="/categories/论文阅读/" itemprop="url" rel="index">
<span itemprop="name">论文阅读</span>
</a>
</span>
</span>
<span id="/2018-03-21.html" class="leancloud_visitors" data-flag-title="Neural Response Generation with Dynamic Vocabularies">
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-eye"></i>
</span>
<span class="post-meta-item-text">热度 </span>
<span class="leancloud-visitors-count"></span>
<span>℃</span>
</span>
</div>
</header>
<div class="post-body" itemprop="articleBody">
<link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/hint.css/2.4.1/hint.min.css"><h1 id="aaai-18-neural-response-generation-with-dynamic-vocabularies">AAAI-18 Neural Response Generation with Dynamic Vocabularies</h1>
<p><a href="https://arxiv.org/abs/1711.11191" target="_blank" rel="external">PDF</a></p>
<p>这是我本周要讲的论文,发表在18年AAAI会议上。本文针对采用静态词表解码容易生成不相关回复以及解码效率过低的问题,提出了使用动态词表解码来解决。</p>
<h1 id="motivation">Motivation</h1>
<p><strong>shortcomings(open domain conversation)</strong>:</p>
<ul>
<li>words that are semantically far from the current conversation also take part in decoding, irrelevant responses and generic responses.</li>
<li>the decoding process becomes unnecessarily slow.</li>
</ul>
<p><strong>solutions</strong>:</p>
<ul>
<li>dynamic vocabulary sequence-to-sequence (DVS2S) model</li>
<li>In training: vocabulary construction and response generation are jointly learned by maximizing a lower bound of the true objective with a Monte Carlo sampling method.</li>
<li>In inference: word prediction model dynamically allocates a small vocabulary for an input</li>
</ul>
<h1 id="problem-formalization">Problem Formalization</h1>
<p><span class="math display">\[p(Y_i|X_i) = p(Y_i|T_i,X_i)p(T_i|X_i)\]</span></p>
<p>target vocabulary : <span class="math inline">\(T_i\)</span> (sampled from a multivariate Bernoulli distribution)</p>
<p>response:<span class="math inline">\(Y_i\)</span> input:<span class="math inline">\(X_i\)</span></p>
<p>word selection model: <span class="math inline">\(f(X)\)</span></p>
<p>response generation model: <span class="math inline">\(g(X, T)\)</span></p>
<h1 id="model">Model</h1>
<img src="/2018-03-21.html/01.png" alt="01.png" title="">
<ul>
<li>[<strong>Sequence-to-Sequence Model</strong>]</li>
</ul>
<p>略</p>
<ul>
<li><p>[<strong>word selection model</strong>]</p></li>
<li><p><strong>Function words</strong></p>
<p>We collect words appearing more than times 10 in the training data, excluding nouns, verbs, adjectives and adverbs from them, and use the remaining ones to form a function word set.</p>
<p>There are 701 function words</p></li>
<li><p><strong>Content words</strong></p>
<div class="image-size-200" style="width:80%; text-align: center">
<p> <img src="/2018-03-21.html/02.png" alt="02.png" title=""></p>
</div>
<ul>
<li><p>The input vector is given by the last hidden state of the encoder</p></li>
<li><p>MLP is employed to predict the vocabulary</p></li>
</ul>
<p><span class="math display">\[\beta_{I(c)} = \sigma(W_c^Th_t + b_c)\]</span></p>
<ul>
<li>The word prediction loss is formulated as</li>
</ul>
<p><span class="math display">\[𝑃(𝑤_{𝑝𝑜𝑠} = 1|𝑋)+𝑝(𝑤_{𝑛𝑒𝑔} = 0|𝑋)\]</span></p>
<p>where <span class="math inline">\(𝑤_{𝑛𝑒𝑔}\)</span> are sampled by frequency, and $ 𝑤_{𝑝𝑜𝑠}$ are words in the ground-truth response.</p>
<p>-:)这边原文没有说明,这预训练的过程中,词表构造模型是通过负采样的方法进行的,负样本是通过词频进行采样的,因为频率高的词越容易导致在回复中出现,正样本是标注数据中的词。</p></li>
</ul>
<h1 id="model-training">Model Training</h1>
<ul>
<li><strong>Joint learning</strong></li>
</ul>
<p><span class="math display">\[\sum_{i=1}^{N}log(p(Y_i|X_i)) = \sum_{i=1}^{N}log(\sum_{Ti}log(\sum_{T_i}p(Y_i|T_i,X_i)p(T_i|X_i)))\]</span></p>
<ol style="list-style-type: decimal">
<li>With a latent variable T, it is difficult to optimize as logarithm is outside the summation.</li>
</ol>
<p>instead maximize a variational lower bound of <span class="math inline">\(\sum_{i=1}^{N}log(p(Y_i|X_i))\)</span>:</p>
<div class="image-size-200" style="width:60%; text-align: center">
<p> <img src="/2018-03-21.html/03.png" alt="03.png" title=""></p>
</div>
<ol start="2" style="list-style-type: decimal">
<li>log trick:</li>
</ol>
<p><span class="math display">\[\frac{dlog(f(x))}{dx} = \frac{1}{f(x)}\frac{df(x)}{dx}\]</span></p>
<p><span class="math display">\[\nabla log(f(x)) = \frac{\nabla f(x)}{f(x)}\]</span></p>
<p><span class="math display">\[\nabla p(T_i|X_i) = p(T_i|X_i)\frac{\nabla p(T_i|X_i)}{p(T_i|X_i)} = p(T_i|X_i)\nabla logp(T_i|X_i)\]</span></p>
<p><span class="math inline">\(\frac{\partial L_i(\theta)}{\partial \theta}\)</span> :</p>
<div class="image-size-200" style="width:60%; text-align: center">
<p> <img src="/2018-03-21.html/04.png" alt="04.png" title=""></p>
</div>
<ol start="3" style="list-style-type: decimal">
<li>we employ the Monte Carlo sampling technique to approximate <span class="math inline">\(\frac{\partial L_i(\theta)}{\partial \theta}\)</span>:</li>
</ol>
<div class="image-size-200" style="width:60%; text-align: center">
<p> <img src="/2018-03-21.html/05.png" alt="05.png" title=""></p>
</div>
<p>$T_{(i,s)} $ a multivariate Bernoulli distribution <span class="math inline">\((\{\beta\}^{|V|})\)</span></p>
<ol start="4" style="list-style-type: decimal">
<li>To reduce variance, we normalize the gradient with the length of the response:</li>
</ol>
<div class="image-size-200" style="width:60%; text-align: center">
<p> <img src="/2018-03-21.html/06.png" alt="06.png" title=""></p>
</div>
<div class="image-size-200" style="width:60%; text-align: center">
<p> <img src="/2018-03-21.html/07.png" alt="07.png" title=""></p>
</div>
<ul>
<li><strong>Algorithm</strong></li>
</ul>
<div class="image-size-200" style="width:60%; text-align: center">
<p> <img src="/2018-03-21.html/08.png" alt="08.png" title=""></p>
</div>
<h1 id="experiment">Experiment</h1>
<ul>
<li><p><strong>Experiment Setup</strong></p></li>
<li><p><strong>dataset</strong>: Baidu Tieba</p>
<p>training set: 5 million pairs validation set: 10000 pairs test set: 1; 000 pairs</p></li>
<li><p>samples S: 5</p>
<p>function words: 701</p>
<p>content words: rank according to <span class="math inline">\(\{\beta_i\}\)</span> and select top 1000 words to form a target vocabulary</p>
<p>beam size: 20</p></li>
<li><p><strong>Evaluation Metrics</strong></p></li>
<li>Word overlap based metrics</li>
<li>Embedding based metrics</li>
<li>Distinct-1 & distinct-2</li>
<li><p>3-scale human annotation</p></li>
<li><p><strong>Comparison Methods</strong></p></li>
<li>S2SA: https://github.com/mila-udem/blocks</li>
<li>S2SA-MMI: https://github.com/jiweil/Neural-Dialogue-Generation</li>
<li>TA-S2S: https://github.com/LynetteXing1991/TAJA-Seq2Seq</li>
<li>CVAE: https://github.com/snakeztc/NeuralDialog-CVAE</li>
<li><p>S-DVS2S: separately learn a generation model and a word prediction model</p></li>
<li><p><strong>Evaluation Results</strong></p></li>
<li><p>automatic metrics evaluation:</p>
<img src="/2018-03-21.html/09.png" alt="09.png" title=""></li>
<li><p>human evaluation:</p>
<div class="image-size-200" style="width:70%; text-align: center">
<p> <img src="/2018-03-21.html/10.png" alt="10.png" title=""></p>
</div></li>
<li><p>efficiency of decoding:</p>
<div class="image-size-200" style="width:90%; text-align: center">
<p> <img src="/2018-03-21.html/11.png" alt="11.png" title=""></p>
</div>
<p></p></li>
</ul>
<h1 id="discussions">Discussions</h1>
<ul>
<li><strong>Dynamic vocabulary coverage</strong>:</li>
</ul>
<div class="image-size-200" style="width:80%; text-align: center">
<p> <img src="/2018-03-21.html/12.png" alt="12.png" title=""></p>
</div>
<ul>
<li><strong>Performance across different dynamic vocabulary sizes</strong></li>
</ul>
<div class="image-size-200" style="width:80%; text-align: center">
<p> <img src="/2018-03-21.html/13.png" alt="13.png" title=""></p>
</div>
<ul>
<li><strong>Case study</strong></li>
</ul>
<img src="/2018-03-21.html/14.png" alt="14.png" title="">
</div>
<footer class="post-footer">
<div class="post-tags">
<a href="/tags/NLP/" rel="tag"># NLP</a>
<a href="/tags/深度学习/" rel="tag"># 深度学习</a>
<a href="/tags/AAAI/" rel="tag"># AAAI</a>
<a href="/tags/Dialogue-Generation/" rel="tag"># Dialogue Generation</a>
</div>
<div class="post-nav">
<div class="post-nav-next post-nav-item">
<a href="/2018-03-20.html" rel="next" title="Multi-Task Learning in Machine Comprehension">
<i class="fa fa-chevron-left"></i> Multi-Task Learning in Machine Comprehension
</a>
</div>
<span class="post-nav-divider"></span>
<div class="post-nav-prev post-nav-item">
<a href="/2018-03-25.html" rel="prev" title="Learning Discourse-level Diversity for Neural Dialog Models using Conditional Variational Autoencoders">
Learning Discourse-level Diversity for Neural Dialog Models using Conditional Variational Autoencoders <i class="fa fa-chevron-right"></i>
</a>
</div>
</div>
</footer>
</div>
</article>
<div class="post-spread">
</div>
</div>
</div>
<div class="comments" id="comments">
</div>
</div>
<div class="sidebar-toggle">
<div class="sidebar-toggle-line-wrap">
<span class="sidebar-toggle-line sidebar-toggle-line-first"></span>
<span class="sidebar-toggle-line sidebar-toggle-line-middle"></span>
<span class="sidebar-toggle-line sidebar-toggle-line-last"></span>
</div>
</div>
<aside id="sidebar" class="sidebar">
<div class="sidebar-inner">
<ul class="sidebar-nav motion-element">
<li class="sidebar-nav-toc sidebar-nav-active" data-target="post-toc-wrap" >
文章目录
</li>
<li class="sidebar-nav-overview" data-target="site-overview">
站点概览
</li>
</ul>
<section class="site-overview sidebar-panel">
<div class="site-author motion-element" itemprop="author" itemscope itemtype="http://schema.org/Person">
<img class="site-author-image" itemprop="image"
src="/uploads/headimage.png"
alt="luxingwu" />
<p class="site-author-name" itemprop="name">luxingwu</p>
<p class="site-description motion-element" itemprop="description">爱生活,爱动漫,爱IT</p>
</div>
<nav class="site-state motion-element">
<div class="site-state-item site-state-posts">
<a href="/archives/">
<span class="site-state-item-count">21</span>
<span class="site-state-item-name">日志</span>
</a>
</div>
<div class="site-state-item site-state-categories">
<a href="/categories/index.html">
<span class="site-state-item-count">8</span>
<span class="site-state-item-name">分类</span>
</a>
</div>
<div class="site-state-item site-state-tags">
<a href="/tags/index.html">
<span class="site-state-item-count">24</span>
<span class="site-state-item-name">标签</span>
</a>
</div>
</nav>
<div class="links-of-author motion-element">
</div>
</section>
<!--noindex-->
<section class="post-toc-wrap motion-element sidebar-panel sidebar-panel-active">
<div class="post-toc">
<div class="post-toc-content"><ol class="nav"><li class="nav-item nav-level-1"><a class="nav-link" href="#aaai-18-neural-response-generation-with-dynamic-vocabularies"><span class="nav-number">1.</span> <span class="nav-text">AAAI-18 Neural Response Generation with Dynamic Vocabularies</span></a></li><li class="nav-item nav-level-1"><a class="nav-link" href="#motivation"><span class="nav-number">2.</span> <span class="nav-text">Motivation</span></a></li><li class="nav-item nav-level-1"><a class="nav-link" href="#problem-formalization"><span class="nav-number">3.</span> <span class="nav-text">Problem Formalization</span></a></li><li class="nav-item nav-level-1"><a class="nav-link" href="#model"><span class="nav-number">4.</span> <span class="nav-text">Model</span></a></li><li class="nav-item nav-level-1"><a class="nav-link" href="#model-training"><span class="nav-number">5.</span> <span class="nav-text">Model Training</span></a></li><li class="nav-item nav-level-1"><a class="nav-link" href="#experiment"><span class="nav-number">6.</span> <span class="nav-text">Experiment</span></a></li><li class="nav-item nav-level-1"><a class="nav-link" href="#discussions"><span class="nav-number">7.</span> <span class="nav-text">Discussions</span></a></li></ol></div>
</div>
</section>
<!--/noindex-->
</div>
</aside>
</div>
</main>
<footer id="footer" class="footer">
<div class="footer-inner">
<div class="copyright" >
©
<span itemprop="copyrightYear">2018</span>
<span class="with-love">
<i class="fa fa-heart"></i>
</span>
<span class="author" itemprop="copyrightHolder">luxingwu</span>
<script async src="//dn-lbstatics.qbox.me/busuanzi/2.3/busuanzi.pure.mini.js"></script>
<span id="busuanzi_container_site_pv">本站总访问量<span id="busuanzi_value_site_pv"></span>次</span>
<script>
(function(){
var bp = document.createElement('script');
var curProtocol = window.location.protocol.split(':')[0];
if (curProtocol === 'https') {
bp.src = 'https://zz.bdstatic.com/linksubmit/push.js';
}
else {
bp.src = 'http://push.zhanzhang.baidu.com/push.js';
}
var s = document.getElementsByTagName("script")[0];
s.parentNode.insertBefore(bp, s);
})();
</script>
</div>
<div class="powered-by">
由 <a class="theme-link" href="https://hexo.io">Hexo</a> 强力驱动
</div>
<div class="theme-info">
主题 -
<a class="theme-link" href="https://github.com/iissnan/hexo-theme-next">
NexT.Pisces
</a>
</div>
</div>
</footer>
<div class="back-to-top">
<i class="fa fa-arrow-up"></i>
</div>
</div>
<script type="text/javascript">
if (Object.prototype.toString.call(window.Promise) !== '[object Function]') {
window.Promise = null;
}
</script>
<script type="text/javascript" src="/lib/jquery/index.js?v=2.1.3"></script>
<script type="text/javascript" src="/lib/fastclick/lib/fastclick.min.js?v=1.0.6"></script>
<script type="text/javascript" src="/lib/jquery_lazyload/jquery.lazyload.js?v=1.9.7"></script>
<script type="text/javascript" src="/lib/velocity/velocity.min.js?v=1.2.1"></script>
<script type="text/javascript" src="/lib/velocity/velocity.ui.min.js?v=1.2.1"></script>
<script type="text/javascript" src="/lib/fancybox/source/jquery.fancybox.pack.js?v=2.1.5"></script>
<script type="text/javascript" src="/js/src/utils.js?v=5.1.2"></script>
<script type="text/javascript" src="/js/src/motion.js?v=5.1.2"></script>
<script type="text/javascript" src="/js/src/affix.js?v=5.1.2"></script>
<script type="text/javascript" src="/js/src/schemes/pisces.js?v=5.1.2"></script>
<script type="text/javascript" src="/js/src/scrollspy.js?v=5.1.2"></script>
<script type="text/javascript" src="/js/src/post-details.js?v=5.1.2"></script>
<script type="text/javascript" src="/js/src/bootstrap.js?v=5.1.2"></script>
<script src="https://cdn1.lncld.net/static/js/av-core-mini-0.6.4.js"></script>
<script>AV.initialize("XecypjdPpCg7MgoNcjp8sePj-gzGzoHsz", "xFDVBlGjOSikas5RICmsp4aK");</script>
<script>
function showTime(Counter) {
var query = new AV.Query(Counter);
var entries = [];
var $visitors = $(".leancloud_visitors");
$visitors.each(function () {
entries.push( $(this).attr("id").trim() );
});
query.containedIn('url', entries);
query.find()
.done(function (results) {
var COUNT_CONTAINER_REF = '.leancloud-visitors-count';
if (results.length === 0) {
$visitors.find(COUNT_CONTAINER_REF).text(0);
return;
}
for (var i = 0; i < results.length; i++) {
var item = results[i];
var url = item.get('url');
var time = item.get('time');
var element = document.getElementById(url);
$(element).find(COUNT_CONTAINER_REF).text(time);
}
for(var i = 0; i < entries.length; i++) {
var url = entries[i];
var element = document.getElementById(url);
var countSpan = $(element).find(COUNT_CONTAINER_REF);
if( countSpan.text() == '') {
countSpan.text(0);
}
}
})
.fail(function (object, error) {
console.log("Error: " + error.code + " " + error.message);
});
}
function addCount(Counter) {
var $visitors = $(".leancloud_visitors");
var url = $visitors.attr('id').trim();
var title = $visitors.attr('data-flag-title').trim();
var query = new AV.Query(Counter);
query.equalTo("url", url);
query.find({
success: function(results) {
if (results.length > 0) {
var counter = results[0];
counter.fetchWhenSave(true);
counter.increment("time");
counter.save(null, {
success: function(counter) {
var $element = $(document.getElementById(url));
$element.find('.leancloud-visitors-count').text(counter.get('time'));
},
error: function(counter, error) {
console.log('Failed to save Visitor num, with error message: ' + error.message);
}
});
} else {
var newcounter = new Counter();
/* Set ACL */
var acl = new AV.ACL();
acl.setPublicReadAccess(true);
acl.setPublicWriteAccess(true);
newcounter.setACL(acl);
/* End Set ACL */
newcounter.set("title", title);
newcounter.set("url", url);
newcounter.set("time", 1);
newcounter.save(null, {
success: function(newcounter) {
var $element = $(document.getElementById(url));
$element.find('.leancloud-visitors-count').text(newcounter.get('time'));
},
error: function(newcounter, error) {
console.log('Failed to create');
}
});
}
},
error: function(error) {
console.log('Error:' + error.code + " " + error.message);
}
});
}