-
Notifications
You must be signed in to change notification settings - Fork 0
/
2018-03-27.html
1005 lines (534 loc) · 34.6 KB
/
2018-03-27.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
<!DOCTYPE html>
<html class="theme-next pisces use-motion" lang="zh-Hans">
<head>
<!-- hexo-inject:begin --><!-- hexo-inject:end --><meta charset="UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta name="theme-color" content="#222">
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<link href="/lib/fancybox/source/jquery.fancybox.css?v=2.1.5" rel="stylesheet" type="text/css" />
<link href="//fonts.googleapis.com/css?family=Lato:300,300italic,400,400italic,700,700italic&subset=latin,latin-ext" rel="stylesheet" type="text/css">
<link href="/lib/font-awesome/css/font-awesome.min.css?v=4.6.2" rel="stylesheet" type="text/css" />
<link href="/css/main.css?v=5.1.2" rel="stylesheet" type="text/css" />
<meta name="keywords" content="NLP,深度学习,Dialogue Generation," />
<link rel="shortcut icon" type="image/x-icon" href="/favicon.ico?v=5.1.2" />
<meta name="description" content="Neural Network Dialog System Papers A list of papers about creating dialog systems using deep nets! Please feel free to add an issue for suggesting missing good paper. Bookmarks Long-term Context">
<meta name="keywords" content="NLP,深度学习,Dialogue Generation">
<meta property="og:type" content="article">
<meta property="og:title" content="Neural Network Dialog System Papers">
<meta property="og:url" content="http://luxingwu.com/2018-03-27.html">
<meta property="og:site_name" content="宫悟桑的小屋">
<meta property="og:description" content="Neural Network Dialog System Papers A list of papers about creating dialog systems using deep nets! Please feel free to add an issue for suggesting missing good paper. Bookmarks Long-term Context">
<meta property="og:locale" content="zh-Hans">
<meta property="og:updated_time" content="2018-03-28T01:54:49.729Z">
<meta name="twitter:card" content="summary">
<meta name="twitter:title" content="Neural Network Dialog System Papers">
<meta name="twitter:description" content="Neural Network Dialog System Papers A list of papers about creating dialog systems using deep nets! Please feel free to add an issue for suggesting missing good paper. Bookmarks Long-term Context">
<script type="text/javascript" id="hexo.configurations">
var NexT = window.NexT || {};
var CONFIG = {
root: '/',
scheme: 'Pisces',
sidebar: {"position":"left","display":"post","offset":12,"offset_float":12,"b2t":false,"scrollpercent":false,"onmobile":false},
fancybox: true,
tabs: true,
motion: true,
duoshuo: {
userId: '0',
author: '博主'
},
algolia: {
applicationID: '',
apiKey: '',
indexName: '',
hits: {"per_page":10},
labels: {"input_placeholder":"Search for Posts","hits_empty":"We didn't find any results for the search: ${query}","hits_stats":"${hits} results found in ${time} ms"}
}
};
</script>
<link rel="canonical" href="http://luxingwu.com/2018-03-27.html"/>
<title>Neural Network Dialog System Papers | 宫悟桑的小屋</title><!-- hexo-inject:begin --><!-- hexo-inject:end -->
</head>
<body itemscope itemtype="http://schema.org/WebPage" lang="zh-Hans">
<!-- hexo-inject:begin --><!-- hexo-inject:end --><div class="container sidebar-position-left page-post-detail ">
<div class="headband"></div>
<header id="header" class="header" itemscope itemtype="http://schema.org/WPHeader">
<div class="header-inner"><div class="site-brand-wrapper">
<div class="site-meta ">
<div class="custom-logo-site-title">
<a href="/" class="brand" rel="start">
<span class="logo-line-before"><i></i></span>
<span class="site-title">宫悟桑的小屋</span>
<span class="logo-line-after"><i></i></span>
</a>
</div>
<p class="site-subtitle"></p>
</div>
<div class="site-nav-toggle">
<button>
<span class="btn-bar"></span>
<span class="btn-bar"></span>
<span class="btn-bar"></span>
</button>
</div>
</div>
<nav class="site-nav">
<ul id="menu" class="menu">
<li class="menu-item menu-item-home">
<a href="/" rel="section">
<i class="menu-item-icon fa fa-fw fa-home"></i> <br />
首页
</a>
</li>
<li class="menu-item menu-item-archives">
<a href="/archives/" rel="section">
<i class="menu-item-icon fa fa-fw fa-archive"></i> <br />
归档
</a>
</li>
<li class="menu-item menu-item-tags">
<a href="/tags/" rel="section">
<i class="menu-item-icon fa fa-fw fa-tags"></i> <br />
标签
</a>
</li>
<li class="menu-item menu-item-categories">
<a href="/categories/" rel="section">
<i class="menu-item-icon fa fa-fw fa-th"></i> <br />
分类
</a>
</li>
</ul>
</nav>
</div>
</header>
<main id="main" class="main">
<div class="main-inner">
<div class="content-wrap">
<div id="content" class="content">
<div id="posts" class="posts-expand">
<article class="post post-type-normal" itemscope itemtype="http://schema.org/Article">
<div class="post-block">
<link itemprop="mainEntityOfPage" href="http://luxingwu.com/2018-03-27.html">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="name" content="luxingwu">
<meta itemprop="description" content="">
<meta itemprop="image" content="/uploads/headimage.png">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="宫悟桑的小屋">
</span>
<header class="post-header">
<h1 class="post-title" itemprop="name headline">Neural Network Dialog System Papers</h1>
<div class="post-meta">
<span class="post-time">
<span class="post-meta-item-icon">
<i class="fa fa-calendar-o"></i>
</span>
<span class="post-meta-item-text">发表于</span>
<time title="创建于" itemprop="dateCreated datePublished" datetime="2018-03-27T12:12:38+08:00">
2018-03-27
</time>
</span>
<span class="post-category" >
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-folder-o"></i>
</span>
<span class="post-meta-item-text">分类于</span>
<span itemprop="about" itemscope itemtype="http://schema.org/Thing">
<a href="/categories/论文列表/" itemprop="url" rel="index">
<span itemprop="name">论文列表</span>
</a>
</span>
</span>
<span id="/2018-03-27.html" class="leancloud_visitors" data-flag-title="Neural Network Dialog System Papers">
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-eye"></i>
</span>
<span class="post-meta-item-text">热度 </span>
<span class="leancloud-visitors-count"></span>
<span>℃</span>
</span>
</div>
</header>
<div class="post-body" itemprop="articleBody">
<link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/hint.css/2.4.1/hint.min.css"><h1 id="neural-network-dialog-system-papers">Neural Network Dialog System Papers</h1>
<p>A list of papers about creating dialog systems using deep nets! Please feel free to add an issue for suggesting missing <strong>good</strong> paper.</p>
<h1 id="bookmarks">Bookmarks</h1>
<ul>
<li><a href="#long-term-context">Long-term Context</a></li>
<li><a href="#task-bots">Task Bots</a></li>
<li><a href="#chat-bots">Chat Bots</a></li>
<li><a href="#reinforcement-learning">Reinforcement Learning</a></li>
</ul>
<h2 id="long-term-context">Long-term Context</h2>
<p>Mostly the models are evaluated at CNN/Daily Mail and Children's Book Test (CBT) corpora.</p>
<ul>
<li><a href="https://arxiv.org/abs/1506.03340" target="_blank" rel="external">Teaching Machines to Read and Comprehend</a>, Karl Moritz Hermann et al., <em>arXiv</em>, 2015.</li>
<li><p>Deep LSTM/Attentive Reader/Impatient Reader</p></li>
<li><p><a href="https://arxiv.org/abs/1603.01547" target="_blank" rel="external">Text Understanding with the Attention Sum Reader Network</a>, Rudolf Kadlec et al., <em>arXiv</em>, 2016.</p></li>
<li><a href="https://arxiv.org/abs/1511.02301" target="_blank" rel="external">The Goldlocks Principle: Reading Children's Books With Explicit Memory Representations</a>, Felix Hill., <em>arXiv</em>, 2016.</li>
<li><p>Memory Network</p></li>
<li><p><a href="http://arxiv.org/abs/1503.08895v5" target="_blank" rel="external">End-To-End Memory Networks</a>, Sainbayar Sukhbaatar et al., <em>arXiv</em>, 2015.</p></li>
<li><p><a href="http://www.cl.ecei.tohoku.ac.jp/publications/2016/kobayashi-dynamic-entity-naacl2016.pdf" target="_blank" rel="external">Dynamic Entity Representation with Max-pooling Improves Machine Reading</a>, Sosuke Kobayashi et al., <em>arXiv</em>, 2016.</p></li>
<li><p><a href="https://arxiv.org/abs/1606.01549" target="_blank" rel="external">Gated-Attention Readers for Text Comprehension</a>, Bhuwan Dhingra et al., <em>arXiv</em>, 2016.</p></li>
<li><p><a href="http://arxiv.org/abs/1606.02245v3" target="_blank" rel="external">Iterative Alternating Neural Attention for Machine Reading</a>, Alessandro Sordoni et al., <em>arXiv</em>, 2016.</p></li>
<li><p><a href="https://michaelauli.github.io/papers/chitchat.pdf" target="_blank" rel="external">A Neural Network Approach to Context-Senstive Generation of Conversational Responses</a>, Alessandro Sordoni et al, 2015</p></li>
<li><p><a href="https://arxiv.org/abs/1607.04423" target="_blank" rel="external">Attention-over-Attention Neural Networks for Reading Comprehension</a> Yiming Cui et al., <em>arXiv</em> 2016</p></li>
<li><p><a href="https://arxiv.org/pdf/1701.07149.pdf" target="_blank" rel="external">Hierarchical Recurrent Attention Network for Response Generation</a> Chen Xing et al., 2017</p></li>
<li><p><a href="http://www.aclweb.org/anthology/P17-2036" target="_blank" rel="external">How to Make Context More Useful? An Empirical Study on Context-Aware Neural Conversational Models</a> Zhiliang Tian et al., 2017</p></li>
</ul>
<h2 id="task-bots">Task Bots</h2>
<ul>
<li><p><a href="http://arxiv.org/abs/1609.01462v1" target="_blank" rel="external">Joint Online Spoken Language Understanding and Language Modeling with Recurrent Neural Networks</a>, Bing Liu, <em>arXiv</em>, 2016</p></li>
<li><p><a href="http://arxiv.org/abs/1609.01454v1" target="_blank" rel="external">Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling</a>, Bing Liu, <em>arXiv</em>, 2016</p></li>
<li><p><a href="https://arxiv.org/abs/1604.04562" target="_blank" rel="external">A Network-based End-to-End Trainable Task-oriented Dialogue System</a> Tsung-Hsien Wen et al, 2016</p></li>
<li><p><a href="https://arxiv.org/abs/1606.03352" target="_blank" rel="external">Conditional Generation and Snapshot Learning in Neural Dialogue Systems</a> Tsung-Hsien Wen et al, 2016</p></li>
<li><p><a href="http://media.wix.com/ugd/b6d786_137894b7b3a341a09ed0c0b45b46dbb6.pdf" target="_blank" rel="external">Incorporating Unstructured Textual Knowledge Sources into Neural Dialogue</a> Ryan Lowe et al., 2016</p></li>
<li><p><a href="http://arxiv.org/pdf/1606.01269v1.pdf" target="_blank" rel="external">End-to-end LSTM-based dialog control optimized with supervised and reinforcement learning</a>, Jason D. Williams et al., 2016</p></li>
<li><p><a href="https://arxiv.org/pdf/1606.02560v1.pdf" target="_blank" rel="external">Towards End-to-End Learning for Dialog State Tracking and Management using Deep Reinforcement Learning</a> Tiancheng Zhao et al., 2016</p></li>
<li><p><a href="http://arxiv.org/abs/1609.00777" target="_blank" rel="external">End-to-End Reinforcement Learning of Dialogue Agents for Information Access</a> Bhuwan Dhingra et al., 2016</p></li>
<li><p><a href="https://arxiv.org/abs/1612.05688" target="_blank" rel="external">A User Simulator for Task-Completion Dialogues</a> Xinjun Li et al., 2016</p></li>
<li><p><a href="https://arxiv.org/abs/1612.00913" target="_blank" rel="external">End-to-End Joint Learning of Natural Language Understanding and Dialogue Manager</a> Xuesong Yang et al., 2016</p></li>
<li><p><a href="https://arxiv.org/abs/1702.03274" target="_blank" rel="external">Hybrid Code Networks: practical and efficient end-to-end dialog control with supervised and reinforcement learning</a> Jason D. Williams et al., 2017</p></li>
<li><p><a href="https://arxiv.org/abs/1704.07130" target="_blank" rel="external">Learning Symmetric Collaborative Dialogue Agents with Dynamic Knowledge Graph Embeddings</a> He He et al., 2017</p></li>
<li><p><a href="https://arxiv.org/abs/1705.05414" target="_blank" rel="external">Key-Value Retrieval Networks for Task-Oriented Dialogue</a> M Eric et al., 2017</p></li>
<li><p><a href="https://arxiv.org/abs/1706.05125" target="_blank" rel="external">Deal or No Deal? End-to-End Learning for Negotiation Dialogues</a> Mike Lewis et al., 2017</p></li>
<li><p><a href="https://arxiv.org/abs/1706.08476" target="_blank" rel="external">Generative Encoder-Decoder Models for Task-Oriented Spoken Dialog Systems with Chatting Capability</a> Tiancheng Zhao et al., 2017</p></li>
<li><p><a href="https://arxiv.org/pdf/1708.05956.pdf" target="_blank" rel="external">An End-to-End Trainable Neural Network Model with Belief Tracking for Task-Oriented Dialog</a> Liu Bing et al., 2017</p></li>
<li><p><a href="https://arxiv.org/pdf/1706.06210.pdf" target="_blank" rel="external">Sub-domain Modelling for Dialogue Management with Hierarchical Reinforcement Learning</a> Paweł et al., 2017</p></li>
<li><p><a href="http://workshop.colips.org/dstc6/papers/track1_paper02_wu.pdf" target="_blank" rel="external">End-to-End Recurrent Entity Network for Entity-Value Independent Goal-Oriented Dialog Learning</a> CS Wu et al 2017</p></li>
<li><p><a href="https://arxiv.org/pdf/1712.09943.pdf" target="_blank" rel="external">Toward Continual Learning for Conversational Agents</a> S Lee 2017</p></li>
<li><p><a href="https://arxiv.org/abs/1801.04871" target="_blank" rel="external">Building a Conversational Agent Overnight with Dialogue Self-Play</a> Pararth Shah et al 2018</p></li>
</ul>
<h2 id="chat-bots">Chat Bots</h2>
<h3 id="general">General</h3>
<ul>
<li><p><a href="http://arxiv.org/abs/1506.05869" target="_blank" rel="external">A Neural Conversational Model</a> Oriol Vinyals et al., <em>arXiv</em> 2015]</p></li>
<li><p><a href="https://arxiv.org/pdf/1506.06714v1.pdf" target="_blank" rel="external">A Neural Network Approach to Context-Sensitive Generation of Conversational Responses∗</a> Alessandro Sordoni et al., <em>arXiv</em> 2015]</p></li>
<li><p><a href="https://arxiv.org/pdf/1606.00776v2.pdf" target="_blank" rel="external">Multiresolution Recurrent Neural Networks: An Application to Dialogue Response Generation</a> Iulian Vlad Serban et al., <em>arXiv</em> 2016s</p></li>
<li><p><a href="https://arxiv.org/abs/1605.06069" target="_blank" rel="external">A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues</a> Iulian Vlad Serban et al., 2016</p></li>
<li><p><a href="https://arxiv.org/abs/1612.03929" target="_blank" rel="external">Online Sequence-to-Sequence Reinforcement Learning for Open-Domain Conversational Agents</a> Nabiha Asghar et al., 2016</p></li>
<li><p><a href="https://arxiv.org/abs/1802.02032" target="_blank" rel="external">Improving Variational Encoder-Decoders in Dialogue Generation</a> X Shen et al 2018.</p></li>
</ul>
<h3 id="rich-dialog-context">Rich Dialog Context</h3>
<ul>
<li><p><a href="https://arxiv.org/abs/1603.06155" target="_blank" rel="external">A Persona-Based Neural Conversation Model</a> Jiwei Li et al, <em>arXiv</em>, 2016</p></li>
<li><p><a href="http://arxiv.org/pdf/1606.00372v1.pdf" target="_blank" rel="external">Conversational Contextual Cues: The Case of Personalization and History for Response Ranking</a> Rami Al-Rfou et al., 2016</p></li>
<li><p><a href="https://arxiv.org/abs/1709.05453" target="_blank" rel="external">Augmenting End-to-End Dialog Systems with Commonsense Knowledge</a> Tom Young et al., 2017</p></li>
<li><p><a href="https://arxiv.org/abs/1712.09783" target="_blank" rel="external">Topic Compositional Neural Language Model</a> W Wang et al 2017</p></li>
</ul>
<h3 id="diversity">Diversity</h3>
<ul>
<li><p><a href="http://www.aclweb.org/anthology/N16-1014" target="_blank" rel="external">A Diversity-Promoting Objective Function for Neural Conversation Models</a> Jiwei Li et al. 2016</p></li>
<li><p><a href="https://arxiv.org/abs/1611.08562" target="_blank" rel="external">A Simple, Fast Diverse Decoding Algorithm for Neural Generation</a> Jiwei Li et al., 2016</p></li>
<li><p><a href="https://arxiv.org/abs/1702.06703" target="_blank" rel="external">Data Distillation for Controlling Specificity in Dialogue Generation</a> Jiwei Li et al., 2017</p></li>
<li><p><a href="https://arxiv.org/abs/1701.03185" target="_blank" rel="external">Generating High-Quality and Informative Conversation Responses with Sequence-to-Sequence Models</a> Louis Shao et al., 2017</p></li>
<li><p><a href="https://arxiv.org/abs/1703.10960" target="_blank" rel="external">Learning Discourse-level Diversity for Neural Dialog Models using Conditional Variational Autoencoders</a> Tiancheng Zhao et al., 2017</p></li>
<li><p><a href="https://arxiv.org/abs/1702.05962" target="_blank" rel="external">Latent variable dialogue models and their diversity</a> Cao, Kris et al 2017</p></li>
</ul>
<h3 id="reinforcement-learning-and-adversarial">Reinforcement Learning and Adversarial</h3>
<ul>
<li><p><a href="https://arxiv.org/abs/1606.01541" target="_blank" rel="external">Deep Reinforcement Learning for Dialogue Generation</a> Jiwei Li et al., <em>arXiv</em>, 2016</p></li>
<li><p><a href="https://arxiv.org/abs/1701.06547" target="_blank" rel="external">Adversarial Learning for Neural Dialogue Generation</a> Jiwei Li et al., 2017</p></li>
<li><p><a href="https://arxiv.org/abs/1709.02349" target="_blank" rel="external">A deep reinforcement learning chatbot</a> Serban et al 2017</p></li>
<li><p><a href="https://arxiv.org/abs/1711.10122" target="_blank" rel="external">End-to-end Adversarial Learning for Generative Conversational Agents</a> Ludwig, O. 2017.</p></li>
</ul>
<h2 id="reinforcement-learning">Reinforcement Learning</h2>
<ul>
<li><p><a href="https://arxiv.org/abs/1511.08099" target="_blank" rel="external">Strategic Dialogue Management via Deep Reinforcement Learning</a> Heriberto Cuayáhuitl et al., 2015</p></li>
<li><p><a href="http://arxiv.org/abs/1510.09202" target="_blank" rel="external">Generating Text with Deep Reinforcement Learning</a>, Hongyu Guo, <em>arXiv</em>, 2015</p></li>
<li><p><a href="http://arxiv.org/abs/1511.04636v5" target="_blank" rel="external">Deep Reinforcement Learning with a Natural Language Action Space</a>, Ji He et al., <em>arXiv</em>, 2016.</p></li>
<li><p><a href="https://arxiv.org/abs/1506.08941" target="_blank" rel="external">Language Understanding for Text-based Games using Deep Reinforcement Learning</a>, Karthik Narasimhan <em>arXiv</em>, 2016</p></li>
<li><p><a href="https://arxiv.org/abs/1606.01541" target="_blank" rel="external">Deep reinforcement learning for dialogue generation</a> Jiwei Li et al., 2016</p></li>
<li><p><a href="https://arxiv.org/abs/1703.01008" target="_blank" rel="external">End-to-end task-completion neural dialogue systems</a> Xiujun Li et al., 2017</p></li>
<li><p><a href="https://arxiv.org/abs/1706.06210" target="_blank" rel="external">Sub-domain Modelling for Dialogue Management with Hierarchical Reinforcement Learning</a> Paweł Budzianowski et al., 2017</p></li>
<li><p><a href="https://arxiv.org/abs/1707.00130" target="_blank" rel="external">Sample-efficient Actor-Critic Reinforcement Learning with Supervised Data for Dialogue Management</a> Pei-Hao Su et al., 2017</p></li>
<li><p><a href="https://arxiv.org/abs/1704.03084" target="_blank" rel="external">Composite Task-Completion Dialogue Policy Learning via Hierarchical Deep Reinforcement Learning</a> Baolin Peng et al., 2017</p></li>
</ul>
</div>
<footer class="post-footer">
<div class="post-tags">
<a href="/tags/NLP/" rel="tag"># NLP</a>
<a href="/tags/深度学习/" rel="tag"># 深度学习</a>
<a href="/tags/Dialogue-Generation/" rel="tag"># Dialogue Generation</a>
</div>
<div class="post-nav">
<div class="post-nav-next post-nav-item">
<a href="/2018-03-25.html" rel="next" title="Learning Discourse-level Diversity for Neural Dialog Models using Conditional Variational Autoencoders">
<i class="fa fa-chevron-left"></i> Learning Discourse-level Diversity for Neural Dialog Models using Conditional Variational Autoencoders
</a>
</div>
<span class="post-nav-divider"></span>
<div class="post-nav-prev post-nav-item">
<a href="/2018-03-28.html" rel="prev" title="ACL17-Sequential Matching Network: A New Architecture for Multi-turn Response Selection in Retrieval-Based Chatbots">
ACL17-Sequential Matching Network: A New Architecture for Multi-turn Response Selection in Retrieval-Based Chatbots <i class="fa fa-chevron-right"></i>
</a>
</div>
</div>
</footer>
</div>
</article>
<div class="post-spread">
</div>
</div>
</div>
<div class="comments" id="comments">
</div>
</div>
<div class="sidebar-toggle">
<div class="sidebar-toggle-line-wrap">
<span class="sidebar-toggle-line sidebar-toggle-line-first"></span>
<span class="sidebar-toggle-line sidebar-toggle-line-middle"></span>
<span class="sidebar-toggle-line sidebar-toggle-line-last"></span>
</div>
</div>
<aside id="sidebar" class="sidebar">
<div class="sidebar-inner">
<ul class="sidebar-nav motion-element">
<li class="sidebar-nav-toc sidebar-nav-active" data-target="post-toc-wrap" >
文章目录
</li>
<li class="sidebar-nav-overview" data-target="site-overview">
站点概览
</li>
</ul>
<section class="site-overview sidebar-panel">
<div class="site-author motion-element" itemprop="author" itemscope itemtype="http://schema.org/Person">
<img class="site-author-image" itemprop="image"
src="/uploads/headimage.png"
alt="luxingwu" />
<p class="site-author-name" itemprop="name">luxingwu</p>
<p class="site-description motion-element" itemprop="description">爱生活,爱动漫,爱IT</p>
</div>
<nav class="site-state motion-element">
<div class="site-state-item site-state-posts">
<a href="/archives/">
<span class="site-state-item-count">21</span>
<span class="site-state-item-name">日志</span>
</a>
</div>
<div class="site-state-item site-state-categories">
<a href="/categories/index.html">
<span class="site-state-item-count">8</span>
<span class="site-state-item-name">分类</span>
</a>
</div>
<div class="site-state-item site-state-tags">
<a href="/tags/index.html">
<span class="site-state-item-count">24</span>
<span class="site-state-item-name">标签</span>
</a>
</div>
</nav>
<div class="links-of-author motion-element">
</div>
</section>
<!--noindex-->
<section class="post-toc-wrap motion-element sidebar-panel sidebar-panel-active">
<div class="post-toc">
<div class="post-toc-content"><ol class="nav"><li class="nav-item nav-level-1"><a class="nav-link" href="#neural-network-dialog-system-papers"><span class="nav-number">1.</span> <span class="nav-text">Neural Network Dialog System Papers</span></a></li><li class="nav-item nav-level-1"><a class="nav-link" href="#bookmarks"><span class="nav-number">2.</span> <span class="nav-text">Bookmarks</span></a><ol class="nav-child"><li class="nav-item nav-level-2"><a class="nav-link" href="#long-term-context"><span class="nav-number">2.1.</span> <span class="nav-text">Long-term Context</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#task-bots"><span class="nav-number">2.2.</span> <span class="nav-text">Task Bots</span></a></li><li class="nav-item nav-level-2"><a class="nav-link" href="#chat-bots"><span class="nav-number">2.3.</span> <span class="nav-text">Chat Bots</span></a><ol class="nav-child"><li class="nav-item nav-level-3"><a class="nav-link" href="#general"><span class="nav-number">2.3.1.</span> <span class="nav-text">General</span></a></li><li class="nav-item nav-level-3"><a class="nav-link" href="#rich-dialog-context"><span class="nav-number">2.3.2.</span> <span class="nav-text">Rich Dialog Context</span></a></li><li class="nav-item nav-level-3"><a class="nav-link" href="#diversity"><span class="nav-number">2.3.3.</span> <span class="nav-text">Diversity</span></a></li><li class="nav-item nav-level-3"><a class="nav-link" href="#reinforcement-learning-and-adversarial"><span class="nav-number">2.3.4.</span> <span class="nav-text">Reinforcement Learning and Adversarial</span></a></li></ol></li><li class="nav-item nav-level-2"><a class="nav-link" href="#reinforcement-learning"><span class="nav-number">2.4.</span> <span class="nav-text">Reinforcement Learning</span></a></li></ol></li></ol></div>
</div>
</section>
<!--/noindex-->
</div>
</aside>
</div>
</main>
<footer id="footer" class="footer">
<div class="footer-inner">
<div class="copyright" >
©
<span itemprop="copyrightYear">2018</span>
<span class="with-love">
<i class="fa fa-heart"></i>
</span>
<span class="author" itemprop="copyrightHolder">luxingwu</span>
<script async src="//dn-lbstatics.qbox.me/busuanzi/2.3/busuanzi.pure.mini.js"></script>
<span id="busuanzi_container_site_pv">本站总访问量<span id="busuanzi_value_site_pv"></span>次</span>
<script>
(function(){
var bp = document.createElement('script');
var curProtocol = window.location.protocol.split(':')[0];
if (curProtocol === 'https') {
bp.src = 'https://zz.bdstatic.com/linksubmit/push.js';
}
else {
bp.src = 'http://push.zhanzhang.baidu.com/push.js';
}
var s = document.getElementsByTagName("script")[0];
s.parentNode.insertBefore(bp, s);
})();
</script>
</div>
<div class="powered-by">
由 <a class="theme-link" href="https://hexo.io">Hexo</a> 强力驱动
</div>
<div class="theme-info">
主题 -
<a class="theme-link" href="https://github.com/iissnan/hexo-theme-next">
NexT.Pisces
</a>
</div>
</div>
</footer>
<div class="back-to-top">
<i class="fa fa-arrow-up"></i>
</div>
</div>
<script type="text/javascript">
if (Object.prototype.toString.call(window.Promise) !== '[object Function]') {
window.Promise = null;
}
</script>
<script type="text/javascript" src="/lib/jquery/index.js?v=2.1.3"></script>
<script type="text/javascript" src="/lib/fastclick/lib/fastclick.min.js?v=1.0.6"></script>
<script type="text/javascript" src="/lib/jquery_lazyload/jquery.lazyload.js?v=1.9.7"></script>
<script type="text/javascript" src="/lib/velocity/velocity.min.js?v=1.2.1"></script>
<script type="text/javascript" src="/lib/velocity/velocity.ui.min.js?v=1.2.1"></script>
<script type="text/javascript" src="/lib/fancybox/source/jquery.fancybox.pack.js?v=2.1.5"></script>
<script type="text/javascript" src="/js/src/utils.js?v=5.1.2"></script>
<script type="text/javascript" src="/js/src/motion.js?v=5.1.2"></script>
<script type="text/javascript" src="/js/src/affix.js?v=5.1.2"></script>
<script type="text/javascript" src="/js/src/schemes/pisces.js?v=5.1.2"></script>
<script type="text/javascript" src="/js/src/scrollspy.js?v=5.1.2"></script>
<script type="text/javascript" src="/js/src/post-details.js?v=5.1.2"></script>
<script type="text/javascript" src="/js/src/bootstrap.js?v=5.1.2"></script>
<script src="https://cdn1.lncld.net/static/js/av-core-mini-0.6.4.js"></script>
<script>AV.initialize("XecypjdPpCg7MgoNcjp8sePj-gzGzoHsz", "xFDVBlGjOSikas5RICmsp4aK");</script>
<script>
function showTime(Counter) {
var query = new AV.Query(Counter);
var entries = [];
var $visitors = $(".leancloud_visitors");
$visitors.each(function () {
entries.push( $(this).attr("id").trim() );
});
query.containedIn('url', entries);
query.find()
.done(function (results) {
var COUNT_CONTAINER_REF = '.leancloud-visitors-count';
if (results.length === 0) {
$visitors.find(COUNT_CONTAINER_REF).text(0);
return;
}
for (var i = 0; i < results.length; i++) {
var item = results[i];
var url = item.get('url');
var time = item.get('time');
var element = document.getElementById(url);
$(element).find(COUNT_CONTAINER_REF).text(time);
}
for(var i = 0; i < entries.length; i++) {
var url = entries[i];
var element = document.getElementById(url);
var countSpan = $(element).find(COUNT_CONTAINER_REF);
if( countSpan.text() == '') {
countSpan.text(0);
}
}
})
.fail(function (object, error) {
console.log("Error: " + error.code + " " + error.message);
});
}
function addCount(Counter) {
var $visitors = $(".leancloud_visitors");
var url = $visitors.attr('id').trim();
var title = $visitors.attr('data-flag-title').trim();
var query = new AV.Query(Counter);
query.equalTo("url", url);
query.find({
success: function(results) {
if (results.length > 0) {
var counter = results[0];
counter.fetchWhenSave(true);
counter.increment("time");
counter.save(null, {
success: function(counter) {
var $element = $(document.getElementById(url));
$element.find('.leancloud-visitors-count').text(counter.get('time'));
},
error: function(counter, error) {
console.log('Failed to save Visitor num, with error message: ' + error.message);
}
});
} else {
var newcounter = new Counter();
/* Set ACL */
var acl = new AV.ACL();
acl.setPublicReadAccess(true);
acl.setPublicWriteAccess(true);
newcounter.setACL(acl);
/* End Set ACL */
newcounter.set("title", title);
newcounter.set("url", url);
newcounter.set("time", 1);
newcounter.save(null, {
success: function(newcounter) {
var $element = $(document.getElementById(url));
$element.find('.leancloud-visitors-count').text(newcounter.get('time'));
},
error: function(newcounter, error) {
console.log('Failed to create');
}
});
}
},
error: function(error) {
console.log('Error:' + error.code + " " + error.message);
}
});
}
$(function() {
var Counter = AV.Object.extend("Counter");
if ($('.leancloud_visitors').length == 1) {
addCount(Counter);
} else if ($('.post-title-link').length > 1) {
showTime(Counter);
}
});
</script>
<script>
(function(){
var bp = document.createElement('script');
var curProtocol = window.location.protocol.split(':')[0];
if (curProtocol === 'https') {
bp.src = 'https://zz.bdstatic.com/linksubmit/push.js';
}
else {
bp.src = 'http://push.zhanzhang.baidu.com/push.js';
}
var s = document.getElementsByTagName("script")[0];
s.parentNode.insertBefore(bp, s);
})();
</script><!-- hexo-inject:begin --><!-- Begin: Injected MathJax -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({"tex2jax":{"inlineMath":[["$","$"],["\\(","\\)"]],"skipTags":["script","noscript","style","textarea","pre","code"],"processEscapes":true},"TeX":{"equationNumbers":{"autoNumber":"AMS"}}});
</script>
<script type="text/x-mathjax-config">
MathJax.Hub.Queue(function() {
var all = MathJax.Hub.getAllJax(), i;
for(i=0; i < all.length; i += 1) {
all[i].SourceElement().parentNode.className += ' has-jax';
}
});
</script>
<script type="text/javascript" src="//cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<!-- End: Injected MathJax -->
<!-- hexo-inject:end -->
</body>
</html>