-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
image_metrics.py
49 lines (41 loc) · 1.75 KB
/
image_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# Copyright 2019 DeepMind Technologies Limited and Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Compute image metrics: IS, FID."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow_gan as tfgan
def get_image_metrics_for_samples(
real_images, generator, prior, data_processor, num_eval_samples):
"""Compute inception score and FID."""
max_classifier_batch = 10
num_batches = num_eval_samples // max_classifier_batch
def sample_fn(arg):
del arg
samples = generator(prior.sample(max_classifier_batch))
# Samples must be in [-1, 1], as expected by TFGAN.
# Resizing to appropriate size is done by TFGAN.
return samples
fake_outputs = tfgan.eval.sample_and_run_inception(
sample_fn,
sample_inputs=[1.0] * num_batches) # Dummy inputs.
fake_logits = fake_outputs['logits']
inception_score = tfgan.eval.classifier_score_from_logits(fake_logits)
real_outputs = tfgan.eval.run_inception(
data_processor.preprocess(real_images), num_batches=num_batches)
fid = tfgan.eval.frechet_classifier_distance_from_activations(
real_outputs['pool_3'], fake_outputs['pool_3'])
return {
'inception_score': inception_score,
'fid': fid}