-
Notifications
You must be signed in to change notification settings - Fork 43
/
layout_train.py
54 lines (43 loc) · 1.82 KB
/
layout_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Copyright 2023 The tpu_graphs Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright 2023 Google LLC. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Binary for invoking the training loop.
# Usage Example
```sh
BIN='python baselines/layout/layout_train.py'
$BIN --source xla --search random --epochs 10 --max_configs 1000
$BIN --source xla --search default --epochs 10 --max_configs 1000
$BIN --source nlp --search random --epochs 10 --max_configs 1000
$BIN --source nlp --search default --epochs 10 --max_configs 1000
"""
from collections.abc import Sequence
from absl import app
from tpu_graphs.baselines.layout import train_args
from tpu_graphs.baselines.layout import train_lib
def main(unused_argv: Sequence[str]) -> None:
train_lib.train(train_args.get_args())
if __name__ == '__main__':
app.run(main)