diff --git a/NASBench.ipynb b/NASBench.ipynb index 2beef0c27..3a983cd3c 100644 --- a/NASBench.ipynb +++ b/NASBench.ipynb @@ -4,7 +4,6 @@ "metadata": { "colab": { "name": "NASBench.ipynb", - "version": "0.3.2", "provenance": [], "collapsed_sections": [], "toc_visible": true @@ -16,11 +15,11 @@ }, "cells": [ { + "cell_type": "markdown", "metadata": { "id": "SRxqMakh3PRY", "colab_type": "text" }, - "cell_type": "markdown", "source": [ "Copyright 2019 Google LLC\n", "\n", @@ -38,11 +37,11 @@ ] }, { + "cell_type": "markdown", "metadata": { "id": "47ieDn-jNLYd", "colab_type": "text" }, - "cell_type": "markdown", "source": [ "# NASBench-101\n", "\n", @@ -52,27 +51,31 @@ ] }, { + "cell_type": "markdown", "metadata": { "id": "lBNMsBUS3SAq", "colab_type": "text" }, - "cell_type": "markdown", "source": [ "## Load NASBench library and dataset" ] }, { + "cell_type": "code", "metadata": { "id": "vl1oLYux3FhJ", "colab_type": "code", - "outputId": "8008287a-d070-4b32-a7af-bd7fc17f9da1", + "outputId": "260484df-3a86-48ef-88a4-f8e441d524bc", "colab": { "base_uri": "https://localhost:8080/", - "height": 883 + "height": 853 } }, - "cell_type": "code", "source": [ + "# This code was written in TF 1.12 but should be supported all the way through\n", + "# TF 1.15. Untested in TF 2.0+.\n", + "%tensorflow_version 1.x\n", + "\n", "# Download the raw data (only 108 epoch data points, for full dataset,\n", "# uncomment the second line for nasbench_full.tfrecord).\n", "\n", @@ -91,70 +94,71 @@ "# Use nasbench_full.tfrecord for full dataset (run download command above).\n", "nasbench = api.NASBench('nasbench_only108.tfrecord')" ], - "execution_count": 4, + "execution_count": 1, "outputs": [ { "output_type": "stream", "text": [ " % Total % Received % Xferd Average Speed Time Time Time Current\n", " Dload Upload Total Spent Left Speed\n", - "100 498M 100 498M 0 0 192M 0 0:00:02 0:00:02 --:--:-- 192M\n", + "100 498M 100 498M 0 0 54.1M 0 0:00:09 0:00:09 --:--:-- 67.7M\n", "Cloning into 'nasbench'...\n", - "remote: Enumerating objects: 81, done.\u001b[K\n", - "remote: Counting objects: 100% (81/81), done.\u001b[K\n", - "remote: Compressing objects: 100% (44/44), done.\u001b[K\n", - "remote: Total 81 (delta 36), reused 79 (delta 36), pack-reused 0\u001b[K\n", - "Unpacking objects: 100% (81/81), done.\n", + "remote: Enumerating objects: 92, done.\u001b[K\n", + "remote: Total 92 (delta 0), reused 0 (delta 0), pack-reused 92\u001b[K\n", + "Unpacking objects: 100% (92/92), done.\n", "Processing ./nasbench\n", - "Requirement already satisfied: tensorflow>=1.12.0 in /usr/local/lib/python3.6/dist-packages (from nasbench==1.0) (1.13.1)\n", - "Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.12.0->nasbench==1.0) (0.33.1)\n", - "Requirement already satisfied: grpcio>=1.8.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.12.0->nasbench==1.0) (1.15.0)\n", - "Requirement already satisfied: keras-applications>=1.0.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.12.0->nasbench==1.0) (1.0.7)\n", - "Requirement already satisfied: six>=1.10.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.12.0->nasbench==1.0) (1.11.0)\n", - "Requirement already satisfied: absl-py>=0.1.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.12.0->nasbench==1.0) (0.7.0)\n", - "Requirement already satisfied: gast>=0.2.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.12.0->nasbench==1.0) (0.2.2)\n", - "Requirement already satisfied: tensorflow-estimator<1.14.0rc0,>=1.13.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.12.0->nasbench==1.0) (1.13.0)\n", + "Requirement already satisfied: tensorflow>=1.12.0 in /usr/local/lib/python3.6/dist-packages (from nasbench==1.0) (1.15.0)\n", + "Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.12.0->nasbench==1.0) (3.1.0)\n", "Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.12.0->nasbench==1.0) (1.1.0)\n", - "Requirement already satisfied: numpy>=1.13.3 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.12.0->nasbench==1.0) (1.14.6)\n", - "Collecting tensorboard<1.14.0,>=1.13.0 (from tensorflow>=1.12.0->nasbench==1.0)\n", - "\u001b[?25l Downloading https://files.pythonhosted.org/packages/fa/7b/3ee06856ec30d5136cd2002408df1d111fcff269f3691147dbf3b8dc0ba2/tensorboard-1.13.0-py3-none-any.whl (3.2MB)\n", - "\u001b[K 100% |████████████████████████████████| 3.2MB 10.9MB/s \n", - "\u001b[?25hRequirement already satisfied: keras-preprocessing>=1.0.5 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.12.0->nasbench==1.0) (1.0.9)\n", - "Requirement already satisfied: protobuf>=3.6.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.12.0->nasbench==1.0) (3.6.1)\n", - "Requirement already satisfied: astor>=0.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.12.0->nasbench==1.0) (0.7.1)\n", - "Requirement already satisfied: h5py in /usr/local/lib/python3.6/dist-packages (from keras-applications>=1.0.6->tensorflow>=1.12.0->nasbench==1.0) (2.8.0)\n", - "Requirement already satisfied: mock>=2.0.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow-estimator<1.14.0rc0,>=1.13.0->tensorflow>=1.12.0->nasbench==1.0) (2.0.0)\n", - "Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.14.0,>=1.13.0->tensorflow>=1.12.0->nasbench==1.0) (0.14.1)\n", - "Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.14.0,>=1.13.0->tensorflow>=1.12.0->nasbench==1.0) (3.0.1)\n", - "Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from protobuf>=3.6.1->tensorflow>=1.12.0->nasbench==1.0) (40.8.0)\n", - "Requirement already satisfied: pbr>=0.11 in /usr/local/lib/python3.6/dist-packages (from mock>=2.0.0->tensorflow-estimator<1.14.0rc0,>=1.13.0->tensorflow>=1.12.0->nasbench==1.0) (5.1.2)\n", + "Requirement already satisfied: keras-preprocessing>=1.0.5 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.12.0->nasbench==1.0) (1.1.0)\n", + "Requirement already satisfied: tensorflow-estimator==1.15.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.12.0->nasbench==1.0) (1.15.1)\n", + "Requirement already satisfied: astor>=0.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.12.0->nasbench==1.0) (0.8.0)\n", + "Requirement already satisfied: numpy<2.0,>=1.16.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.12.0->nasbench==1.0) (1.17.3)\n", + "Requirement already satisfied: six>=1.10.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.12.0->nasbench==1.0) (1.12.0)\n", + "Requirement already satisfied: absl-py>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.12.0->nasbench==1.0) (0.8.1)\n", + "Requirement already satisfied: keras-applications>=1.0.8 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.12.0->nasbench==1.0) (1.0.8)\n", + "Requirement already satisfied: gast==0.2.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.12.0->nasbench==1.0) (0.2.2)\n", + "Requirement already satisfied: protobuf>=3.6.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.12.0->nasbench==1.0) (3.10.0)\n", + "Requirement already satisfied: google-pasta>=0.1.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.12.0->nasbench==1.0) (0.1.7)\n", + "Requirement already satisfied: tensorboard<1.16.0,>=1.15.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.12.0->nasbench==1.0) (1.15.0)\n", + "Requirement already satisfied: grpcio>=1.8.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.12.0->nasbench==1.0) (1.15.0)\n", + "Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.12.0->nasbench==1.0) (0.33.6)\n", + "Requirement already satisfied: wrapt>=1.11.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.12.0->nasbench==1.0) (1.11.2)\n", + "Requirement already satisfied: h5py in /usr/local/lib/python3.6/dist-packages (from keras-applications>=1.0.8->tensorflow>=1.12.0->nasbench==1.0) (2.8.0)\n", + "Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from protobuf>=3.6.1->tensorflow>=1.12.0->nasbench==1.0) (41.4.0)\n", + "Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow>=1.12.0->nasbench==1.0) (0.16.0)\n", + "Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow>=1.12.0->nasbench==1.0) (3.1.1)\n", "Building wheels for collected packages: nasbench\n", - " Building wheel for nasbench (setup.py) ... \u001b[?25ldone\n", - "\u001b[?25h Stored in directory: /tmp/pip-ephem-wheel-cache-t1ak51pu/wheels/4b/19/99/1d5fdfe30f8b16fab91e900808f4f7e5adc38e602c84970ad5\n", + " Building wheel for nasbench (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for nasbench: filename=nasbench-1.0-cp36-none-any.whl size=46791 sha256=88bafd1b9d560fd0fe9b6f8ceac03001e0b42b4dc2718648550569f654f098b3\n", + " Stored in directory: /tmp/pip-ephem-wheel-cache-blg0rruf/wheels/4b/19/99/1d5fdfe30f8b16fab91e900808f4f7e5adc38e602c84970ad5\n", "Successfully built nasbench\n", - "Installing collected packages: nasbench, tensorboard\n", - " Found existing installation: tensorboard 1.12.2\n", - " Uninstalling tensorboard-1.12.2:\n", - " Successfully uninstalled tensorboard-1.12.2\n", - "Successfully installed nasbench-1.0 tensorboard-1.13.0\n", + "Installing collected packages: nasbench\n", + "Successfully installed nasbench-1.0\n", + "WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/nasbench/lib/training_time.py:130: The name tf.train.SessionRunHook is deprecated. Please use tf.estimator.SessionRunHook instead.\n", + "\n", + "WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/nasbench/lib/training_time.py:174: The name tf.train.CheckpointSaverListener is deprecated. Please use tf.estimator.CheckpointSaverListener instead.\n", + "\n", + "WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/nasbench/lib/evaluate.py:30: The name tf.train.NanLossDuringTrainingError is deprecated. Please use tf.estimator.NanLossDuringTrainingError instead.\n", + "\n", "Loading dataset from file... This may take a few minutes...\n", "WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/nasbench/api.py:146: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Use eager execution and: \n", "`tf.data.TFRecordDataset(path)`\n", - "Loaded dataset in 56 seconds\n" + "Loaded dataset in 53 seconds\n" ], "name": "stdout" } ] }, { + "cell_type": "code", "metadata": { "id": "oFhFRmck7NzM", "colab_type": "code", "colab": {} }, - "cell_type": "code", "source": [ "# Standard imports\n", "import copy\n", @@ -179,26 +183,26 @@ "outputs": [] }, { + "cell_type": "markdown", "metadata": { "id": "llC2AebQOWq9", "colab_type": "text" }, - "cell_type": "markdown", "source": [ "## Basic usage" ] }, { + "cell_type": "code", "metadata": { "id": "kZvm6i0VGP_M", "colab_type": "code", + "outputId": "2999b6a6-9f1d-4361-8be9-ee54afdb82be", "colab": { "base_uri": "https://localhost:8080/", - "height": 271 - }, - "outputId": "02400c58-897e-4932-cbdb-69cada5f4686" + "height": 258 + } }, - "cell_type": "code", "source": [ "# Query an Inception-like cell from the dataset.\n", "cell = api.ModelSpec(\n", @@ -218,7 +222,7 @@ "for k, v in data.items():\n", " print('%s: %s' % (k, str(v)))" ], - "execution_count": 6, + "execution_count": 3, "outputs": [ { "output_type": "stream", @@ -232,32 +236,32 @@ " [0 0 0 0 0 0 0]]\n", "module_operations: ['input', 'conv3x3-bn-relu', 'conv1x1-bn-relu', 'maxpool3x3', 'conv3x3-bn-relu', 'conv3x3-bn-relu', 'output']\n", "trainable_parameters: 2694282\n", - "training_time: 1154.361083984375\n", + "training_time: 1155.85302734375\n", "train_accuracy: 1.0\n", - "validation_accuracy: 0.9336938858032227\n", - "test_accuracy: 0.9286859035491943\n" + "validation_accuracy: 0.9376001358032227\n", + "test_accuracy: 0.9311898946762085\n" ], "name": "stdout" } ] }, { + "cell_type": "markdown", "metadata": { "id": "uXnVdG32Oe19", "colab_type": "text" }, - "cell_type": "markdown", "source": [ "## Example search experiment (random vs. evolution)" ] }, { + "cell_type": "code", "metadata": { "id": "Xtl_Aqr7OeOF", "colab_type": "code", "colab": {} }, - "cell_type": "code", "source": [ "def random_spec():\n", " \"\"\"Returns a random valid spec.\"\"\"\n", @@ -386,16 +390,16 @@ "outputs": [] }, { + "cell_type": "code", "metadata": { "id": "HMfF2zXxpQNA", "colab_type": "code", + "outputId": "edff2ca4-8a55-4537-838a-dedc7a9f360b", "colab": { "base_uri": "https://localhost:8080/", - "height": 197 - }, - "outputId": "2eaa5578-6c15-47c3-c6e3-9bf4a8c1e84b" + "height": 187 + } }, - "cell_type": "code", "source": [ "# Run random search and evolution search 10 times each. This should take a few\n", "# minutes to run. Note that each run would have taken days of compute to\n", @@ -410,7 +414,7 @@ " times, best_valid, best_test = run_evolution_search()\n", " evolution_data.append((times, best_valid, best_test))" ], - "execution_count": 12, + "execution_count": 5, "outputs": [ { "output_type": "stream", @@ -431,16 +435,16 @@ ] }, { + "cell_type": "code", "metadata": { "id": "2d-yRmuhkz35", "colab_type": "code", + "outputId": "2ae12897-074f-4705-db94-6be1aa4208dc", "colab": { "base_uri": "https://localhost:8080/", - "height": 368 - }, - "outputId": "6a035511-69a3-4516-e65b-dcf89a3f2364" + "height": 367 + } }, - "cell_type": "code", "source": [ "plt.figure(figsize=(20, 5))\n", "\n", @@ -467,7 +471,7 @@ "plt.grid()\n", "plt.title('Evolution search trajectories (red=validation, blue=test)')" ], - "execution_count": 20, + "execution_count": 6, "outputs": [ { "output_type": "execute_result", @@ -479,12 +483,12 @@ "metadata": { "tags": [] }, - "execution_count": 20 + "execution_count": 6 }, { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxkAAAFNCAYAAABsY6I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvXmYXkWV+P853enu7HvIThIgQAIi\nSNgRAm6AIriLgKCjuM7oOLjg+HUY1JGZcX7qiAsuyKaiomJwWERJs4SEJGTfCUl30p3uztrp7vTe\nb/3+OPfmvf32u/e79ns+z9NPv3ere+reunXqVJ06Jc45DMMwDMMwDMMwMkVZvgUwDMMwDMMwDGNo\nYUaGYRiGYRiGYRgZxYwMwzAMwzAMwzAyihkZhmEYhmEYhmFkFDMyDMMwDMMwDMPIKGZkGIZhGIZh\nGIaRUczIyAAislhE6vItRy7IR15F5Ksi8vNc3jOGHG8Uke1ZSLdKRLaIyPQMpulE5JRMpZfK/UTk\nJyLy/7Ihm4jcKCJ/TVfOFO5zp4g8HOd4jYi8Odty5AIROUtEXsq3HMXOIMt1VuqWQkBEbhWRF3N8\nz7h1UA7lyEp9JSJTRGSbiIzIUHpzvfI7LBPppXo/EXlSRG7Jhmy5aj+IyP0i8s04x3Oqk7OJiFwr\nIr9N5twha2R4jYAOEWkTkUavAIzOt1ylhohUi8jHBpOGc+4/nHODSiMTxpFz7gXn3GmDSSMGtwHP\nO+caspB2znHOfdI5943BphNNuTjnfuWce+tg0y42Ehk9KabVT9k55zYAzSJybSbSL3QidIP/d0+O\nZYh8B9mqW4qOTBjwmaiDMmEcZbG++gpwv3OuIwtp5xzn3NXOuQcGm040PZ+J9kMxksjoSSGdaHr4\nceAMETkr0fVD1sjwuNY5Nxo4GzgHuCPP8hQ8ouSsXOSq52SwZFnOTwIPxbl3eRbvbRgAvwI+kW8h\ncsi1zrnRgb/P5lugYiXXdXip6wwRqQJuAaJ2OuRahxsly2/QDtL4OOeG5B9QA7w5sP1fwP8Ftt8O\nrAVagL3AnYFjcwGHfsh7gIPAvwaOjwDuB44AW4AvAnWB4wuAaqAZ2Ay8M3DsfuBHwJNAG7AMmAZ8\nz0tvG3BOjDwJ8F1gvyf3RuBM71gV8B1P3ibgJ8AI79gE4C/AAe8efwFmBdKtBr7lydIBnAJMBH4J\n7POuecw7dzFQB/yLJ0cD8JEY8n4L6AM6vbze4+13wGeAV4Hd3r7ve++hBXgFeGMgnTuBhwPbFwIv\nec93PbA4cGyA3MAoL18hT442YIb3zL7nnbvP+10Vkc8vA42oEbA44j3PAP7gPdfdwD8Fjp0PrPby\n0wT8fzGe0YmebMMiysiPgSeAY8Cb471f75oveu9iH/BR7xmfksL3coGXz/LAvncBGwL5We498wbg\nHqAycO7x+3nyfzMZ2Yj/He7xzvXf2UXArcCLgXMuBlYBR73/F0eU62+g5boV+CswOcnncSfwKPBb\n79o1wOuj1S9R8pt0OUlSlquAbqDHew7rvf3jgF94z7Ye+Kb//tBv+DnvuRwEfuvtf957pse8tD7g\n7Z+JlsOqbNXJhfJHhG4I7K/yyveZgX1TvOdygrf9cWAncBhYAsyI8Q1UAx8LHDtebqO9gyhlJpEO\n+SHwf17ZfBk4OUZeh6ON0UNeWquAqUmUn5OBZ73rDqJG6PiIZ/hlYAPQBQwDZgN/9Mr5IcL1/a3A\ni2j9dcT7Bq6OIe9DaD3d4T2bLxHWx/+A1gnPe+f+Hq2zjnrP9IyIZxT8Jt8BrPOewUvAWYFjA+T2\nnn8nqr/agObAM3vQO7cW+BpQFsjnMlRHH/Ke5/H37p1zOvAMWn62A+8PHLsGbU+0eu/j9hjP6DJg\nZ8S+agbq8Hjvt9x7HweBXag+dgT0UBLf0QeA1RH7/hlY4v1Opo01LPJ7SSQb8BFgq/ecdgGf8PbH\n0vN30r/98E70m2r27rsgolzfjpbro2j9PzzJ53E/qpef8WR7DpiTav2QqJwkKcttqL7o9p7D497+\nlNssRNHD3v5L8NpvcWVJRfBi+qN/I2AW2iD/fuD4YuB16GjOWd5DvT7iA/gZalC8Hq1IF3jH7wZe\nQBu0s4FNeAoCqECV0FeBSuBKr8CdFiiIB4FzUQXwrPeyP4x+XN8ElsbI09vQBvh41OBYAEz3jn0X\nVXoTgTHA48C3vWOTgPcAI71jv8czGgIFfg9wBqosKlAF9lvUQKkALg88t17gLm//NUA7MCGGzNUE\nPqbAx/aMJ6tvCN3kyTkMNWAa8T5uApUE2hg65N23DHiLtz3FOx5P7roIOe4CVgAnoI2Jl4BvROTz\nP9HGx4hgGt69XwG+7r3nk9AK723e8eXAzd7v0cCFMZ7P24HNEfvuRyu4S7z7DE/wfq9Cy++ZaEX7\na/pXaF9BK9Sof4H7vga8JbD9e+Ar3u9zUeNuGPp9bAU+H/FOBxgZSci2mMTfYdAAu5VwY20i2mi5\n2ZPrBm97UqDsvQac6r2/auDuJOuPO9FK+r1oObod/U4rotQvx/MbWdZIXE4+FO/dACdGfgOB+/wJ\nuNd7ricAKwkr3N8A/0q4/Fwa7V1FpNdCoPE1VP+IYWR4x+4DvhXY/gzwlPf7SrTufgNaJ/wAr8Eb\n5RuoJn4jot87iCgzyeiQQ2ijYBhqADwSIz+fQOuKkah+ORcYm0T5OQWtW6vQuvF54HsRz3Adqv9G\neGmvR+upUcEy5+W9BzXQyoFPoR0Oksz7IVwPPOil7euMj6J1od9ZtC5wzf2E66Bz0A6xC7z73+Ld\noyoJuV+MkO1B4M/efecCO4B/CJzfC/yj915G0L++GoU2tj/iHT8HLU8LveMNeJ1rqP56Q4zn8xkC\nHaaB8hapw+O930+iHZqz0Xp0Kf0b8j8idp3kdzyNRMvl/IAcq4APBsp0UnU7/Y2MRLK9HTWCBbgc\nbX+8IfI7Csh0J+H2w6mocf8W7xl9Cf3WKgNlbyXaGJ+I6rlPJlmv3O89j8vQsvV9YnzzxO+ESFRO\nktXn99NfL6XVZol8V4H0Jnr7x8Z9LtmszPP55xWWNu+lO+DvBHpiopz/PeC7EQ812Nu/kvDHswu4\nKnDsNsIK4o1oA7kscPw3eFa89+J/Fjj2j8DWwPbrggUlQsYr0Urtwoj0xftwTg7su4gYVibqPnYk\nsF0N3BXYno72BgwwHNCPOLLnfT+xG9H9PiYX/tiuTPD+juD1HNO/kvgy8FDEuU+jiiOR3JGVz2vA\nNYHttwE1gfO7CfRi0L8hcAGwJyK9O4Bfer+fB/6dBD3nwI3Aioh99wMPJvt+0YbR3YFjp5LiSIZ3\n3TeB+7zfY7x7zolx7ueBP0W802hGRkqyEf07jGVk3AysjLh+OXBroOx9LXDs03gNxiSexZ3B94JW\n0MFGQA3JGRlxy0kK7+ZO+vfGTUU7PoKjWTfgdVCgjaGfEqjDor2riP31wGWpyFWMf4R1Q1A5f9w7\n9mbgtcC5y4APe79/AfxX4NhotPE8N8o3UE36RkYyOuTngWPXANti5PWjRPTcJ1N+oqRzPbA24hl+\nNLB9Edo7OqAn3Mv7zsD2SC//0+K8n2hGxklx3ul475xxgWfk10E/xus8Cpy/HW2gJpI7+M7KUZ2w\nMLDvE0B14PzIb/14GmjP/wsRx+8F/s37vcdLL36jTTsPHonYV01/HZ6ofniWQOMZeCspjmR41z0M\nfN37PR9tb42McW7Mup3+RkZKsqHeCp+L/I4Cx+8k3H74f8DvAsfK0HpvcaDs3RQ4/l/AT5J8FvcH\n3wtaP/QBs73tpOqHROUkhXdzP/31Ulptlsh3Fdhf4e0/MZ4cQ91v73rn3Bi04J0OTPYPiMgFIrJU\nRA6IyFHUep4ccX1j4Hc7WmhArdy9gWO1gd8zgL3OuVDE8ZmB7abA744o21EnqDvnnkWHcn8I7BeR\nn4rIWLSnaSTwiog0i0gz8JS3HxEZKSL3ikitiLSghWl8hK9/MD+zgcPOuSPR5AAOOed6A9vBZ5Ms\nwfshIreLyFYROerJP46B7wNgDvA+P5/euZeiBkYiuSOZQf93V+vt8zngnOuMce0cYEaEHF9FK3fQ\nof1TgW0iskpE3hEjnSNogz6S4POJ+36JXx5T4dfAuz2f33cDa5xztQAicqqI/MULotAC/AfR308k\ncWVL8juMl3ZkXiO/tVjfcDIcl9v7nuvoXz6SIVE5SZc5aCXfEEj3XrTHErSHToCVIrJZRD6aRJpj\n0AZ3KXC9c2584O9n3v6lwEivXM5FO2T+5B3rV96cc23oiEKwvGWCZHRIsuX6IbQT5hER2Sci/yUi\nFSQoPyIyVUQeEZF673t/mIHfZaTOqI3QC0GOy+uca/d+pq0zRKRcRO4Wkdc8+Wq8Q7F0xr9EfIOz\n0eecSO4gk9FnFqkzgu+ln16LIscFEXLciLpLg3obXAPUishzInJRjHSS0RmJ6odM6owbvN8fQj0k\n2mFQdXsinXG1iKwQkcNevq5JMl0/7eA3HPLulQ2d0Ya6O6WjM+KVk3TJVJvFxy+DcXXGUDcyAHDO\nPYdadd8J7P416n4y2zk3DvWlkySTbEArJ58TA7/3AbMjJl6diFrLg8Y597/OuXOBhWiB+CI6lNaB\n+qT6SnOc00nvoO5HpwEXOOfGosN50D+/LvB7LzBRRMZnQuRE+0XkjWij6P3oKMR41F0o2vvYi45k\nBBsIo5xzdyeQO5oc+9APz+dEb18i2X05dkfIMcY5dw2Ac+5V59wNaKX+n8CjIjIqSjobgHlRJgkG\n753o/cYrj34Iv7ZYf8dv6NwWtAK+GlUYvw4k82N0CHu+V4a+SnLfS1zZiP8dxnv+MPD9+eln5Fsj\nILf3Pc+if/nwOYYagT5BZRC3nIiGuIz5bkTEf16Rz2Iv2lM5OZDuWOfcGQDOuUbn3MedczPQ3tEf\nSZzwiSIyEx1CH5JhVJPFOdcH/A5tON0A/MU51+od7lfevO95EtHLW7wykYiM6RDnXI9z7t+dcwvR\n+UvvQF1z45YftBPBAa/zvvebGPi9R+qMEzM02TmhzkDrp+vQkadxaG8rUWT0ZftWxDc40jn3mwRy\nR8pxEB25itQZwfeSSGc8FyHHaOfcpwCcc6ucc9ehOuMxtBxGYwOq++PJm+j9JtIZP4lTJ20OnPoM\nMEVEzka/l6DOSLeNFVM2rwPsD2hbbqrXVniCNHWGiIh3r2zojNGoS1E6OiNmOUlWnxNdZ6TTZon1\nTBegnh8t8R5ISRgZHt8D3iIir/e2x6C93p0icj5aaSXL74A7RGSCiMxCXZ58Xkat3y+JSIWILAau\nBR4ZbAZE5Dyvd6ACLaSdQMizxn8GfFdE/J6omSLyNu/SMWgjtVlEJgL/Fu8+TkOpPok2TCZ4+bgs\n3jVxaEJ9/+IxBvVlPQAME5GvA2NjnPswcK2IvM3rzRouGrZuVgK5m4BJIjIukNZvgK+JxhyfjPoq\nJhsmdCXQKiJfFpERnixnish5ACJyk4hM8d6Nb+mHIhNxztWhPqHnx7pREu/3d8CtIrJQREYS8X6d\nhvAbHesv4na/Bj6HGqK/D+wfg/rst4nI6ahfdTLElY343+EB9JnFKj9PAKeKyIdEZJiIfAA1vv+S\njGCioTJvjXPKuSLybq8B8nlUaa+Ict464BoRmSgi07xzfeKWE6chLmO+G+fcHi+dJmCu3/D0yvpf\ngf8RkbEiUiYiJ4vI5V7e3ufVTaA9n45w+Yv2TV4OPOuc60rw2EqBX6MuCzfSv9H0G+AjInK219j5\nD+Bl51xNlDTWoaOCIz3j7h8ijserFzOmQ0TkChF5neiodQvaSA4lKj/od9kGHPUM0C8muNVKtHF4\nt4iM8urlS1KV1yNZndGFjiSNRN9FLH4GfNLTneLJ93YRGZNA7iZglohUQj8D9FsiMkZE5gBfIHmd\n8Re0vrrZe68Vnk5fICKVoh0O45xzPei7GqAvPFainggxR9CSeL+/A/5JRGaJyATUzz94/Sfj1Eln\nBM7rQfXEf6MN6mcCyaTbxoonWyU63+EA0CsiV6PuVD7R9Hxk2m8XkTd57ah/QctRUusEiYZyXRzn\nlGtE5FKvzHwDdbmNNroVr36IWU4gJX0e+R2l22aJpYcvR9tbcSkZI8M5dwD1U/66t+vTwF0i0urt\ni9VrEI1/R3t8d6Mf8vHwo865blQhXI32fPwI9endNtg8oA3vn6GNhlq0gv1v79iX0cbqCtHh47+h\noxegBtYIT54VqKtNIm5GFdI2dM7F5+OfHpPvA+8VkSMi8r8xznnak2kHmq9OYgw7ex/sdWhP+gHv\nvC8SLstR5fae/2+AXaJDhTPQOQir0Z6hjWgEoaTiSnsK5x2oO8Vu9Nn+HO1VA53wvFm0Z+H76Hye\nWDHN7/XkjkfM9+ucexJ9x8965zybTB5i8BvCDc6Dgf23o0qiFS2DSS3Ek4RsMb9Dp8Pu3wKWee/s\nwoi0D6Hv4F/Qb+FLwDsi5I6KpwQmEd1o8Pkz2tj0J5e/21OqkTyETh6tQeuD488miXKSLL7Bd0hE\n1ni/P4wq3S2ejI+iboMA5wEve+VvCeqzvMs7difwgPdM3+/tuxHtaSwVHpf+PYC+SxTOuZfRTpwZ\nBJSoc+5vqE/3H9CG6cnAB2Ok/13Uf78JeACdnB3kTga+A/8+mdQh09By0YJOYn2OsL6KV37+HZ3g\nfhQNpvHHeDfxyvm16ITxPahr4QfSkBfg22jnT7OI3B7jnAdRXVHvyR/zO3bOrUYnnd+D5nMn6gOf\nSO5n0ShEjSLi1yn/iJaNXWjErF+j884S4o2IvRUtM/tQtxw/sAhoHVPj1e+fRL/JaOl0o54ZNyW4\nZbz3+zNU765H9V7c95uAX6MjSr93/d3O0m1jxZTNe4b/5KV1BNVJSwLHo+l5Ase3o8/tB+i3dS0a\nzro7kVAiMhvVfxvjnPZrtCPtMBpkIdY7ilk/JFFOkuUXwELvOTyWbpsljh6+AW27xEWcSzS6ZBj5\nRUTuQiewJuNXXnR4vaJrgTe5IbIgX6EjIpcCn/GGh0sa0QWV7nXOxfIBN4yiQkQeRCeb35VvWbKB\niExBI1yeE6fzysggInIT6rJc8uutiS7cerNz7v0JzzUjwyhkRETQXtz1LgOrSBuGYRhDF1H3xmXo\nOh0xFzk1DCP7ZNVdSkSuEpHtIrJTRL4S5fgcEfm7iGwQkWoJ+xAjIieKyF9FIw5tEY30gYjME5GX\nvTR/6/tLGkOWNeiE258lOtEwjOLD9ISRYRpRn/I/5FsQwyh1sjaSITrRbAe66EkdukjLDU4j2Pjn\n/B6N3vGAiFyJrhx9s3esGo0I8YzoLP2Qc65dRH4H/NE594iI/ATt4f5xVjJhGIZhZA3TE4ZhGEOX\nbI5knI/6RO7yJtU8gk7YDbKQ8ETQpf5xEVmILvzxDGi8YU9xCLog3aPeNQ+giwQZhmEYxYfpCcMw\njCFKNo2MmfSPEFTHwEWL1qOLfgG8CxgjIpPQGNDNIvJHEVkrIv/t9XhNQlfD7o2TpmEYhlEcmJ4w\nDMMYomRi4ZzBcDtwj2is+ufRcHR9qFxvBM5Bw8r9Fg059+dkExaR24DbAEaMGHHu7NmzE1wRnVAo\nRFlZaUT6LaW8guV3KFNKeYXB5XfHjh0HnXNTEp+ZN0xPFBCllFew/A5lSimvkB89kU0jo57+qzbO\nImJVRefcPrweKs+f9j3OuWYRqQPW+XHdReQx4EI0HvV4ERnm9VINSDOQ9k+BnwIsWrTIrV69Oq1M\nVFdXs3jx4rSuLTZKKa9g+R3KlFJeYXD5FZHazEqTEqYnioxSyitYfocypZRXyI+eyKYJtwqY70X5\nqEQXFlkSPEFEJou3gi1wB+FFbVahSsK3mq4Etjidpb4UeK+3/xZS6LUyDMMwCgrTE4ZhGEOUrBkZ\nXg/SZ9GVG7cCv3PObRaRu0Tknd5pi4HtIrIDmIquKuivwnk78HcR2QgI4RCmXwa+ICI7Ud/bX2Qr\nD4ZhGEb2MD1hGIYxdMnqnAzn3BPAExH7vh74/SjhCCCR1z4DnBVl/y40IolhGIZR5JieMAzDGJqU\nzowXwzAMwzAMwzByghkZhmEYhmEYhmFkFDMyDMMwDMMwDMPIKGZkGIZhGIZhGIaRUczIMAzDMAzD\nMAwjo5iRYRiGYRiGYRhGRjEjwzAMwzAMwzCMjGJGhmEYhmEYhmEYGcWMDMMwDMMwDMMwMooZGYZh\nGIZhGIZhZBQzMgzDMAzDMAzDyChmZBiGYRiGYRiGkVHMyDAMwzAMwzAMI6OYkWEYhmEYhmEYRkYx\nI8MwDMMwDMMwjIxiRoZhGIZhGIZhGBnFjAzDMAzDMAzDMDKKGRmGYRiGYRiGYWQUMzIMwzAMwzAM\nw8goZmQYhmEYhmEYhpFRzMgwDMMwDMMwDCOjmJFhGIZhGIZhGEZGMSPDMAzDMAzDMIyMYkaGYRiG\nYRiGYRgZxYwMwzAMwzAMwzAySlaNDBG5SkS2i8hOEflKlONzROTvIrJBRKpFZFbgWJ+IrPP+lgT2\n3y8iuwPHzs5mHgzDMIzsYXrCMAxjaDIsWwmLSDnwQ+AtQB2wSkSWOOe2BE77DvCgc+4BEbkS+DZw\ns3eswzkXSzF80Tn3aLZkNwzDMLKP6QnDMIyhSzZHMs4HdjrndjnnuoFHgOsizlkIPOv9XhrluGEY\nhjF0MT1hGIYxRMmmkTET2BvYrvP2BVkPvNv7/S5gjIhM8raHi8hqEVkhItdHXPctb+j8uyJSlXHJ\nDcMwjFxgesIwDGOIIs657CQs8l7gKufcx7ztm4ELnHOfDZwzA7gHmAc8D7wHONM51ywiM51z9SJy\nEtqL9Sbn3GsiMh1oBCqBnwKvOefuinL/24DbAKZOnXruI488klY+2traGD16dFrXFhullFew/A5l\nSimvMLj8XnHFFa845xZlWKSkMD1RfJRSXsHyO5QppbxCnvSEcy4rf8BFwNOB7TuAO+KcPxqoi3Hs\nfuC9UfYvBv6SSJZzzz3XpcvSpUvTvrbYKKW8Omf5HcqUUl6dG1x+gdUuS3og0Z/pieKjlPLqnOV3\nKFNKeXUuP3oim+5Sq4D5IjJPRCqBDwJLgieIyGQR8WW4A7jP2z/BH94WkcnAJcAWb3u691+A64FN\nWcyDYRiGkT1MTxiGYQxRshZdyjnXKyKfBZ4GyoH7nHObReQu1CJagvYwfVtEHDoM/hnv8gXAvSIS\nQueN3O3C0UZ+JSJTAAHWAZ/MVh4MwzCM7GF6wjAMY+iSNSMDwDn3BPBExL6vB34/CgwIMeicewl4\nXYw0r8ywmIZhGEaeMD1hGIYxNLEVvw3DMAzDMAzDyChmZBiGYRiGYRiGkVHMyDAMwzAMwzAMI6OY\nkWEYhmEYhmEYRkYxI8MwDMMwDMMwjIxiRoZhGIZhGIZhGBnFjAzDMAzDMAzDMDKKGRmGYRiGYRiG\nYWQUMzIMwzAMwzAMw8goZmQYhmEYhmEYhpFRzMgwDMMwDMMwDCOjmJFhGIZhGIZhGEZGMSPDMAzD\nMAzDMIyMYkaGYRiGYRiGYRgZxYwMwzAMwzAMwzAyyrB8C2AYhmEYRonS1qZ/BUrl4cPQ2JhvMXJG\nKeW3lPIKMKy1Nff3zPkdDcMwDMMwAH70I2hvz7cUMZlRUwMbNuRbjJxRSvktpbwCTOzthWuvzek9\nzcgwDMMwDCP3OKcGxpln6l8Bsn/lSuaef36+xcgZpZTfUsorwNE8GFRmZBiGYRiGkXv6+vT/tGlw\n+un5lSUG7Y2NBStbNiil/JZSXgG68uAaZhO/DcMwDMPIPb29+r+8PL9yGIaRFczIMAzDMAwj9/gj\nGWZkGMaQxIwMwzAMwzByjxkZhjGkMSPDMAzDMIzc4xsZw2x6qGEMRezLNgzDMAwj9xTKnAzf2Il1\nLN7xoUYp5beU8goQCuX8lmZkGIZhGIaRewrBXWrNGliyJObhuTU18MILuZMnz5RSfksprwDTOjrg\nyitzes+sGhkichXwfaAc+Llz7u6I43OA+4ApwGHgJudcnXesD9jonbrHOfdOb/884BFgEvAKcLNz\nrjub+TAMwzCyg+mJEqYQjIyDB/X+l18e9fCRtWuZe845ORYqf5RSfksprwCtO3bk/J5ZMzJEpBz4\nIfAWoA5YJSJLnHNbAqd9B3jQOfeAiFwJfBu42TvW4Zw7O0rS/wl81zn3iIj8BPgH4MfZyodhGIaR\nHUxPlDiFYGT09UFFBVx2mW53dcGePbpQINA9caKu41EilFJ+SymvAL1NTTm/ZzZHMs4HdjrndgGI\nyCPAdUBQeSwEvuD9Xgo8Fi9BERHgSuBD3q4HgDsx5WEYhlGMmJ4oZfw5Gfmc+N3X19/IWb4cqquP\nb06tqYHXXsu5WPmilPJbSnkFGN/VBe97X07vmc0veyawN7BdB1wQcc564N3oUPm7gDEiMsk5dwgY\nLiKrgV7gbufcY+jQd7NzrjeQ5sws5sEwDJ9Dh6ClJd9SJMXwhgbYvTvfYuSMygMH8i1CupieKGUK\nZSQjeP+ODqishFtvBWDfSy8x9+KL8yNbHiil/A7JvB47pro6Ci3bt+dYmPxP/L4duEdEbgWeB+oB\nf6r/HOdcvYicBDwrIhuBo8kmLCK3AbcBTJ06lepAz0QqtLW1pX1tsVFKeQXLb0qEQpz4619T5vc8\nFjgTu7upefrpfIuRM0aPGkX1lCn5FiNbmJ4oIDKZ15F79nBCTQ37Xn6Z7p07M5Jmqkxev56q/fup\n9/I0ad06Ru7dy17Pf71t+HCq8+DLni9KKb9DMa/TnnqK4Y2NUY8NmzYt5/VUNo2MemB2YHuWt+84\nzrl9aA8VIjIaeI9zrtk7Vu/93yUi1cA5wB+A8SIyzOulGpBmIO2fAj8FWLRokVu8eHFamaiuribd\na4uNUsorWH5ToqsLnn8ezjsPzjgjo3JlgxUrVnDhhRfmW4yc8dLq1cValk1PZJrmZmhry1ryy5cv\n56Kzo02DSYO+Ppg4kbknnwyTJ2cmzVTZtg1EmH/KKbq9cyd0dXGyt53R/BYBpZTfIZnXsWP1W7rk\nkgGHml59Nef1VDaNjFXAfC/KRz3wQcI+sgCIyGTgsHMuBNyBRhBBRCYA7c65Lu+cS4D/cs45EVkK\nvBeNHHIL8Ocs5sEwDAj7Tk+Zg+LyAAAgAElEQVSZAnPn5lWUZOisqSkKOTNFd01NvkVIF9MTmaSn\nB37wg6zG/p9eUwObN6d2UXs7ROtd9V07KipgxIiMyJcymzapi5T/zLZsgdbW44fTym8RU3T5bW2F\nNN1F5zU2wuOPZ1igPLN1K4wcCRs2DDg0Zdgw+PCHcypO1owM51yviHwWeBoNTXifc26ziNwFrHbO\nLQEWA98WEYcOg3/Gu3wBcK+IhNBVye8ORBv5MvCIiHwTWAv8Ilt5MIyCxTlVziksrlNx5Ajs35/e\n/VpbtUHQ0pJ+GjlkUHktQoYdTdpDqKAwPZFhuru1sXzeeXDqqVm5RdPLLzP3gshpMwl47jltyEdO\n8J40CU47DW68UedB5IPHH9e67YMf1O2//EXruQ+prZtWfouYosvvk09quU8jeEBPe7uWwWg4p2W2\n2Bg2DKqqohrtLg8LD2Z1ToZz7gngiYh9Xw/8fhR4NMp1LwGvi5HmLjQiiWGULps3w6MDPp24zKyp\ngfXr07tfRwesWqXGxosvppdGDhlUXouQqYcOwXXX5VuMtDA9kUH8ToepU2H+/KzcoqO+PvW0N22C\nk0+Gz38+KzINiilT1MXEz9OUKTB69PHttPJbxBRdfl96Cc45Bz760ZQvfa26mtmx3Ieefx6efXZw\nsuWD3bvVcJo+fcChjrKynIuT74nfhmGkg+9zff31SfcA7l+5krnnp9nuOnRI7/m2t4Hvu1zADCqv\nRcjhtWvzLYJRCPhGRh4aE3Hp7s7fSEUiIqNL9fXlN6SukRodHTBuXObTbW7W0YBrr8182tmkpUVH\nMf11X4KH8uAGZ1+SYRQjfmNiwQIdGk2C9v37YeHC9O7X0KA9fKeeCqefnl4aOWRQeS1COkrINWxI\n4Zz6Th87lpn0Wlpg717YuBE6OzOTZgRjN22CpiZthCXL8uUDG/Op0tMDdXUpuYgmxYYNapRt3Rre\nLi8/vj1vzx544ok4CQwtii6/O3fCCSekFV59+vbtECus6+rV2rE2fvwgBcwxr72mcyhFBhwaffhw\nzsUxI8MwipFcx5cvhEWzDGOo0dICf/pT5tJrb9dGRmVl1taJmVhToytip9LY37dPG/J79yY+NxZt\nbXDwYPrXx6K1VRtkW7b03/Z6fad2dsLw4Zm/b4FSlPmdMEGjhKXI1OZmWLMm+sHGRu0EaGgYpHA5\npqZG/6JM/J6YB4PJWgyGUYzk2i0iXSPjwAGorc28PAkYs327+lWXCKN27oRCCaFqJE9Xl/6//nod\nlXzxRW0g+IRCUF+ffLSo3l69JhQKX9PZCX4PpnNw9Gj4ew7S1qajBQkYe+SIpjF+vM5lSIZhw7Th\nOphvsrdXo1DNm5fZzo6mJnWLmTdPt/fsUfcbb8S2sbaWuXPmZO5+BU5R5jfNzrbm2lrGx8rrzp1a\nvs87bxCC5YHly+Hss3WeSgQNO3cyK8fimJFhGPnGOY1o4rsftLToREnnYl9TX689LDEW3YnG/Pp6\neOSR9GTs6lL5HnssdjSOaCxbpko8x5x48CA89VTO75svZnZ3w8c+lm8xjFTxG/sjRmgD+jvf6R/R\nprMz9jfe1TXQKAiF9JoNG8IN8e7u8H2ci16vOJe0ITPB7+Cor4/qkhGT4GhBOvjG0549qd03GcrL\ntc71qao63hM8rRh79gdBKeU3YV7HjtWRwWJjxAjtCIhgVB4W0zUjwzDyTVcXvPKK9gyOGaOuBfX1\nOgQcS5l2dWmjIAW/67KensH5aU+apBVyd3fy13R0aL4WLUr/vmlweMcOpmQphGchcqSpiRn5FsJI\nHd9IqKjQ77m3F668Em67TffX1sLvf68jHZHRYn77Wx2hCBr9LS2wcqX2ZPqL223apA0O/xusrIQ3\nvlHv6dPVBQ8+CG94g46oxGH9smWcvXMnXHqpRoxKlhEjBmccrFunEe4+8pHMu21GyjZy5PHttStW\ncFEJLexZSvlNmNdAOSgaRGDUqKiHDi5blmNhzMgwjPzj9yBefDGcf772/ldUwFe/Gjsiy9NPq2Hy\n1a8mfZvt1dVMz7VLTW+v9gbdcENOb9tQXc1pJeQ+dKC6Ot8iGPHwRw8iRxF6enRfebl+K3192tFw\nwgl6/OhRbTDMmQMzZ/a/dswYjfT2vveF99XVaS/8TTeFo8D97nfqtviZzzAAX57WVg3Xed55CTsE\n2g8fVlkvvTS3QSDa23VU9JJLctrw69q7NzVjqsgppfyWUl4BQkkGickkZmQYRr6JnMSdzKTuUKjw\nwlRGo7c3d5PTDaMQOXQI7r1XRx3WrIk+YfrYMe1Q2LUL/vpX7UTo7NSG9f798Mwz0TscZsyI7oIU\n7Onv7Y3d8/+Xv2hnRUcHLF2qUYVi9IL6LGxu1tHJ5mYdbc0llZXF17NsGCWMGRmGkW8ijQo//Fw8\nI2Kw4SBzRbwGjmGUAs3N6mI4e7ZGR4oMO11ZqSMC7e3ayJ8/X92eZs7U72f9eh01iDZpet68gWsE\nVFbCrMD0zsi6YscODXELarz09MC0aepeVVmp8fXj1D0Hd+5k/IIFKnOu6yB/hMcwjKLAtL9h5Jto\nIxnl5fF77IppJMOMDKOU8Ucu5s+HI0fgU5+KHpXpwAEdITj9dB29uPZadZscMQI+/WmYODG9+0ca\nGStXagSrsWPV6BkzRlcIP+00NTI+//m4dUtddTWnlJAromEY6WPa3zDyjd8ICY5kJGqYF8tIhq2e\na5Q6/rwHf5J3LL9oP6CC38AfNiwz6+H09va/Z2+vjpJ85CP6++ST4brr4O9/h5deKo7OC8MwigLT\n/oaRb2KNZMQjHyMZhw5pLP1UOHhQ/3K8VkZVY2N279neHl57oAAYtX27rZNRqPidCD09OjoZK5hD\nZ6dGeTp8WF2sDhzQuRLNzRptLpUVtoPs36+uVv730NSkMtTW6v18eXp6rEPAMIyMYjWKYeQb38jw\njYZkJkvneiSjuxt+/OPoi3jFY9UqjfO/a1d25IrB9JqatFaATZq1a6PGIc8XcwA+8Yl8i2H49PbC\nCy9oI37PHl3Yq7NTG/hPPx39mnXrdO2b5cs12lNfnxoZO3fCr37VP+RsKqxcqZO5faN49Wod2fDL\nrz/R21wbDcPIMFajJINz2hu7bJkqgkQcO6a9V7t2aUMn1qJqHR39F16C+AsidXf3TysYFjHWPfr6\nokczicIbnSvMyB3x8jcILhtsfjMt0113qTx+ul/8YuJrvvCFpJN/42BGP3yZEs0ViXbdK6/kvPEy\nPdsNJue0BzhWr3SOGW6Nw/zx6KPMWrpUG/Pt7Vo2Ghp0cnVZmdbxBw7opOURIzSik09vr87TAP3f\n3q7GSFWVzs+orNT/8Va53ru3/yrhkbS16Tfr32f6dJg7F970Jt0/bZquzdPaakaGYRgZxWqUZNi1\nCx56SKN8tLXFX/G4tTU8LN3drUPc48dH73X2fXT9hkpn58AVXIP4EYd8RdDXpz1loIZENAMlyVVc\nAQreE7fQDCCRzMrkp+WnW1YW3yhIdDwCl4nRj4qK1PNcVZVz1y7X1RXb9z0TiGiDsUDmxYTS7eU2\nBs/Onbhhw7Sh3tioIwY1NeG6PxTSevrYMT0/uLL07t3hEQW//q+u1nK1YkX4W1u7NvF3Fy36VJCm\npvDvAwfgqacGnjNtWvw0DMMwUsCMjGTwRxvOOksbLu95T+xzX3hBDZJTTlGlUVurq6hGhhkEDVM4\ndy5cc41uP/OMnn/lldHTLi/XCXu+kbFpk8Y2f8tb1Gd32TJdzG3kSD3e1ASPPqo9VxdfnDCbu3fv\n5qR58xKelxcmTMh4o3HH9u2cftpp6ScwbpxGZskGZWX6rjPYeHzl5Ze54IILMpZeIbO+hPIKsHXt\nWi7KtxAlTMeMGVpHzZ+vnVHNzVo3nH66Gg67dsHrXqeGaZAjR9R4OOMMePVVHdmYOhUuvDAcTWr4\ncDVW4pGoLpoxQ9NJhIWINQwjg5iRkQy+q8jEiVrZx2uYLl+uSuPii3Xou7tb46JPnhz9/De8Ibzi\n5ObNOvJw9dXJyXXwoKZ7zTW6INP+/XDzzWHltHWr+t9ecQV87nMJk9tTXc1JJTR5tLG6mtNLKL8d\nDQ3xy+4QopTyCtDV0JBvEYxQSOv+3l5t9I8dG9YDzun6E5GjDTU1Oifillu0Q2jiRJgyBb7ylYSL\n4hmGYRQ6ZmSkgnOJ3T58g+Taa3UY/NAh/R1cHCnetcm4onR0wO9+p0aG7z7lz7vw5QuFdKTEOfOz\nNQzDyDbBOVr+vId3vEPdp44dg3e/W0cmfZfYAwfgnnu0Pt+3D046SUccDh+2OtswjCGB1WTJ4CuP\nUCi5qD+g5/nXJevDnqyRsX+/+vLOmqUjIcHJwv71S5aEJ6mbv7ZhGEZ28TuhgsaGSLgD6MABePjh\n8LF9+zRylIi62Yqo/hgzxupswzCGBGZkJEPQyEh2JCOobJI1Mvzh9kT4PWFvexvMnh2+1r8v6AT0\niRPhggsG+gEbhmEYmSVSP4RCOi+vvV3rbH/i9ZVXqiGxZYvOo5s5E772tfB148fbgniGYQwJzMhI\nhmCo2ESVf2RjH1IbyUhGufhrFQSH1CMNmlBIFdmIEYUXlckwDGOoETkSvXq1GhitrTqp2w97fN55\nWi/39en/iRPhnHPyJ7dhGEaWMCMjFZxLbiVmP/xottyl/JGM4JB6tDkZvhuVGRmGYRjZxa9r/Xq/\nsxPmzNHJ3s7pyPPUqeGR5eCot2EYxhDEjIxk8JVBX1/yIxnR5kkkc590jYxoIxkVFWZkGIZh5ILg\noqf+AqIzZ+rf3r0aljYYhtu55FxwDcMwihQzMpIhlTkZ/ghCMkbGypX9V2pdvjwcOSoehw/r/0Qj\nGf5oihkZhmEY2SNY3/sGhoiOfAc7nqJhRoZhGEMUMzKSIRTSRZMmTEjeXSoZI2PZMl0JduxY3W5p\n0VGKgwcTyzR/fv/FlaKNZPhGhikxwzCM7BIZVQq07m1rC/+OPN/qZ8MwhjBZNTJE5Crg+0A58HPn\n3N0Rx+cA9wFTgMPATc65usDxscAW4DHn3Ge9fdXAdMBbhpu3Ouf2ZzMfHDigq7hedJEaG3/6U+xz\n163T85cs0WgiW7fCE0+EDYkga9aoz66/aNi4cWpkTJ+enFx//nP495Yteq8lS9QQWrtWF3OaMgUm\nTUo+r4ZhGDlkyOiJ4Ei3b3CUl6s+gNhGho00G4YxRMmakSEi5cAPgbcAdcAqEVninNsSOO07wIPO\nuQdE5Erg28DNgePfAJ6PkvyNzrnVWRJ9IF1d+v/tb4c9e2DTJo3cFI0jR3TC3969qlyOHoW6uuir\ntx46pJMCa2t1++BBnffhb6dCY6Pea88eVWYHD6rr1ezZuiiUYRhGgTGk9ETQXcqnrEwNjWhhaX0j\nI9HouGEYRpGSzZGM84GdzrldACLyCHAd2uPksxD4gvd7KfCYf0BEzgWmAk8Bi7IoZ2J8n9rJk9V4\nmDIFPvnJ6Of29urqrp/7HGzbBn/8I3zqUxqmMIhz0NwMixfrH8ADD6iR8dGPpi5jdbX+/fM/a8/Y\nsGEwbRq8972pp2UYhpEbho6eiDYqUV6udXq0TqZUA4MYhmEUGdl0Bp0J7A1s13n7gqwH3u39fhcw\nRkQmiUgZ8D/A7THS/qWIrBOR/yeSgxraNzL8Vbzj3TLZ6FKxIkSlm51oczJMeRmGUdgMLT3h1/tB\nd6m+vtijFaGQjWQYhjFkyffE79uBe0TkVnS4ux7oAz4NPOGcq4uiG250ztWLyBjgD+iw+YORJ4nI\nbcBtAFOnTqW6ujotAdva2ti0cSOzmpvZtmoVYzdvpryzk4YY6c3euZMJR46w8fnnGbV7N5Nramh8\n4glGNDT0G0aX3l7G1tRwaONGWj2DY9rWrTgRmtKQdfyaNYyrraXWu3bWjh10Hj3KwRTmY7S1taX9\nnIoRy+/QpZTyCkM+vwWtJ0587TU6Zs1iV10d3YcPM76xEUIhhjc3s3vDBkY0NOCGDRtQr4/duJFT\njx2juaGBnUX07oZ4WRuA5XfoUkp5hfzkN5tGRj0wO7A9y9t3HOfcPrweKhEZDbzHOdcsIhcBbxSR\nTwOjgUoRaXPOfcU5V+9d2yoiv0aH2wcoD+fcT4GfAixatMgt9l2SUiEUYtmf/8yZs2fD+PFceOGF\naigcO8ZpsdJ76SWoreXyxYvVRaqujrkjRmiEkcrK/ucuWMDcq6/Wyd8Ar70GFRUsSEfW3l5ob2ee\nf+2aNXDyyWFXrCSorq4mredUpFh+hy6llFco6vwWv55Yvpy28nJOmjdPg3Y0NOjoRUcH58ydq2tj\njB8/sF4fNgxGjmT07NnMKqJ3V8RlLS0sv0OXUsor5Ce/2TQyVgHzRWQeqjQ+CHwoeIKITAYOO+dC\nwB1oBBGcczcGzrkVWOSc+4qIDAPGO+cOikgF8A7gb1nLwcsvM/PPf1ZlABoyNh13qd5e9cn94hfj\n328w7lKRa3jYIk+GYRQ+xa8nfIIrfjc3Q3093HefRvebNw+WLu1//oYNyS3wahiGUaRkzchwzvWK\nyGeBp9HQhPc55zaLyF3AaufcEmAx8G0Rcegw+GcSJFsFPO0pjnJUcfwsW3mgowMnAm96k0aBmjgx\nsSHgHw8aGaFQ2FAJ0N0Nra2BHa2V0FMFhxKLNnIkjBgR5b7BbVNehmEUMENCT/gEV/zu7dXtigrV\nHe3t8OST/c/fu1eNjHHjsi6aYRhGPsjqnAzn3BPAExH7vh74/SjwaII07gfu934fA87NtJxxbq7/\n586F7dvDjfhEIxmRRkaMiX8PPKCdXcd55QxVSk2JRaushC99KWC72EiGYRhFSNHribAQ4f/+34QJ\n8I//CH/728BFVocPhxkz4PTTcy6qYRhGLsj3xO/CJjj8HdwXj2BUp6C7VJSRjLY2nY6x6IwOpK8X\n2jfD6FHwlnlxb7Frly7V0XsEhvmLfnd19Td+zMgwDMPIHcHRZL/uLyvTjqPmZjj1VDjzzPD5q1er\noXHVVbmX1TAMIweYkRGPSCPD/53IXSpy1de+vqhGhnMwvayJ1z35E93YvEp9oEIb44o1vg7G7oTy\n7wGBCLj9VhU3I6Oo2L5d11IEtRd37ervfZEJtm2byu7d6V9fUQHz5xdHZOStW8cwcmS+pcgdu3eP\nSiXGg5FpgmFrg9t+HdzbqwujnnVW+JzDh3Xx1Mg1lJJk/36oqUn9utGjYeHCtG5pGIaREmZkxMM5\nnZORipHR1zewNyvGnIxQCKqOHdbzLr9cVwofNw7e+ta4Yh3ZBNvL4IJroGJ44MAJJ/RPvBhagwY9\nPfDII+Hism8f7NiR+fs0N0/n5ZcHl8a558Ze7L6QqKmZRFMSbodDhZaWsYlPMrKDc0hvr/4OhdSg\n6OvT7fLycG/B8OEDrgPSrqeffloDEqbD7bersWEMpLYWnnsu/Hq2bp1KbW1+ZcolpZTfUsorwP79\nE3LeGWVGRjwiXaOSmZPR1gYtLbB2ra743dCgrciqKt0XTL7uBIYN2wGtDaqMpkzR3q5z47sTd/RB\nw24InQ1EWUgWsJGMIqKvT4vaFVfAeeepF8XTT8MnPkFGe+NffHETl156aVrX7t4Njz0Gt9wCs2Zl\nTqZs8fzze7jssrn5FiNnvPBCE3BavsUoTXbs4IT6ev14n3wStm7V+tc5nfC9bZueV1U18NpBdAT1\n9MCJJ8IHP5j8NRs3qoi+TVQI1NbqoE6hsHy5Bv6aOlW3GxqGR311Q5VSym8p5RWgszP3mTUjIx6+\nkdHTE+6h8lfq/vOfNTSUf05HB6xfD089pYrlG9+AQ4d0TLuqSn1N1q/vl+5pO05j4vB9MKoG/vpX\nNTRGjUroJyMOcILrcxDt1MiheqOg8YtQVZUaFX5xmTw5tpFx6JDOJfU7TJNhy5aJtLenJ2NTk7aV\nnnpK5Sp0tmyZXFANl2xTUzOBt70t31KUKB0d9FVVwfnn64fif9CVler3+OKL6gbb16dDln79HjkR\nPEWc03oilY4IPyJhpl0x08U5eOih/Bo9LS30681ubFTX1dM8m/3AgdG0teVHtnxQSvktpbwCDB8+\nIvFJGcaMjHisW8ekFSvglVfgyBEdQ21s1N6nadN0X0eHntvVpaMYPT06LN7ersd6enR0Yvp0OPts\nrVWffx46O6nsbsNVOfXJ7e3Vv5UrYdWquGLJvhmw41ToeQkqu2OfGCWilVH4JONFsWuXdphOnZq8\nLdneXt4/ZHIKHDumRby1NXqHbKExmLwWI52d9q3nkxF79qgB8eqrOno9fLh2GI0fryPTb387rFun\nlvq0afpxV1XB61+f9j3TGaz2zy8UI8Pvu7v4YrXR8sHSpWoP+iMXW7boK/QHfV99tZn586fkR7g8\nUEr5LaW8AjQ3514pmpERj5YWbfFNm6ZK46STwosnzZ8PBw7oPIoZM7RXau9e/X3yyfDe96qxsHUr\nfPjD2i0ydaoaHi0tMH8+a6ovRk5r48zzj6Qm17bR0DMJd1kFjIzRlS2iRo1R8EQaFckYGf45t9yS\nfE9mdXUDixen51JTU6ONgQ99SNcVK3QGk9dipLp6P2CzefOCcwxra1NdMH26DjPOnAkLFujHMmqU\n/vnDjh//eEY6gNJZu7XQjAzfMWD0aLXH8sGIEToV8p//Wbcff1wDcfjb1dX1LF48Pz/C5YFSym8p\n5RWgunpwo6fpYEZGPJwjVF6uxkEoBKecoivolZVpD9Szz2pv1KxZWuMfPar7FyxQw2TaNL3ussvC\nafq16umn42rmIWcBl0W9e0xkFLAP3MVzwOZ7DlmSMTJyNbffv0+hNE4Mo+CYMAGuvx7+9V/Vp9Cf\nvBT58WTIjTWdkYxC+459N6mKivjnZRNbYsowsocZGQmQ4AJLp5+uBkdVFVx3nc6j6OvTIfLWVq3B\nKyo05Icf9mP69P4J+kZGRUXa0yYie7yN4ibWSEYy1+SKyKjMhmGEOa4nIocVg5V8cKHWDDAURjJ8\nIyNK8MWcEblWbihknsaGkSmS+rRF5I/AL4AnnXMFUj3lgJ4eyrq6wi2rYcPCNbu/f/Jk/Rs9Wg2Q\n66/vn0bkGHDAyEg3ymwyjdGlS+HllzXc6G235benyIjPYNylcjWSUWiNE6PwKFk9ESTaxxz8eDLY\nRT4U5mQE1GHeiHyOvke0YRiDJ9n+gx8BHwH+V0R+D/zSObc9e2IVCNu2UXnkiEYMOXAA1qzRyd5V\nVapEmprCE7Y/9CHdt25d/DSPHdP/3kjGYIyMeNTXq4twZ6dOAzEjo3goRCPDRs+MJChNPQEDF+IL\nfjBBH6UMtl5tJCMzRBvJMCPDMDJDUp+2c+5vwN9EZBxwg/d7L/Az4GHnXE8WZcwfTU2UdXfrInev\nvaarsx49qqEoKit1AreI1pSbNiWf7rhxuEmTBx1lNl6DL1LnGYVLLIOhkIyMQmucGIVHyeqJYAUb\nuZZSsMVqIxkDKMSRDHOXMozMkXT/gYhMAm4CbgbWAr8CLgVuARZnQ7i84xyhykoN4bNvn656VFOj\nPkiXX66jFieeqBGlvvzl1JL2KvlsuUuZkVG8pDInw0YyjEKiJPWET6yPMUtGho1kZIbIkQxzlzKM\nzJHsnIw/ocvJPgRc65xr8A79VkRWZ0u4QkB6e+HRR9Xv6OjRcFjb/ft1X29vWt0egwk0kmqDzxqG\nhY3NyTCGAqWsJ/rR2an6wbcCsuQuNRRGMgrByLDoUoaRPZL9tP/XObc02gHn3KIMylNYOIf09cGy\nZRo96g9/UJepykpdbnn3bl0/47TU4/EPppFoIxlDi2IwMmwkw0iC0tQTkXR3E+oLsfKEd9K1agNs\nmACC/q87EZ7LzG127tT5dhMmJH/NgQM6GL9ihc7bE4GzzsrfGhWF4C5l0aUMI3ska2QsFJG1zrlm\nABGZANzgnPtR9kQrDCQUguZmDU04aZIuBVpZqcbFpElwxRVw000pp+s31gYzkpFM+kbxUkhGRqH1\ngBoFSWnqCeeQiO1jjOappnOgphXKJsBhYNskOFIGUc2w1Hn1VTh8WJduSpbW1rCRsXOn7uvshLe+\nNTMyxWL7dqiuHqiXOjr0fyGNZEQaHUZhs26dlud02LFjBtu2ZVaeQubAgcksXpzbeyb7aX/cOfdD\nf8M5d0REPo5GExm6BGvEBQvgnnvgxz+GiRNh0SJ4+GF4//t10b0UCQ1iTkY08eIdM4OjsBnMOhk2\nkmEUEKWpJyD8YXj/Q2Ua7vymszYw590VrB15Ih1lTezc0kVvxNJJlZUwf37/b7mmBtra4t9y7ly9\n7uKLB6Z39tnRG8pNTfCTn6jaWrAAfvhDHZBfvlyjsu/cmbgjYfv26ezerfdOtjH+4otqFM2cOfDY\nyJGwdWtyHW5TpuiauJkk2kiGRWMsHrZt06Cfc+emfu2oUb2MG5dxkQqWtra+nN8zWSOjXETEOa1B\nRaQcqMyeWIWD9PZqV095ebgW9GskkbSdNzMxkmFzMoYmqbhL5QobyTCSoDT1xP79VB44AM89p2HO\nDx6Enlfh2OOUTd7Enp5untg3kkMHR7Ox6WRoHJjEokW61BLoN/b888nduq8vHBU9yAknwJw5A/cP\nGxauV8rKtNG/YYMO0NfXqyGQiObmqbzyCrz+9cm7am3erHLOmDHwWHs7PPNMculUVsJXv5rcuckS\naVTYnIziorNTlyi74YbUr62u3s/ixQszL1SBUl19JOf3TNbIeAqdvHevt/0Jb9/QJhRSdykROOmk\nAceAtMdVBzOSYXMyhhbRRjISlYvIOaXZxkYyjCQoTT1x+LCGOj948HjrtHvkeNUNU6bQNm4mNJbx\nvsubGFd/Ard8TRtFAHv3wm9+ox638+bpvu5u1Q+LF8P558e/dVVV/+26OnjoofCE6kgiOwve9S54\n+9v194oV2tj/3OcGphvk//5vK5s3X8S73gVnnhlfPp+HH9b5Fx/5SHLnR2PZMjW+Mu3O1Nen3s/B\nbXOXKh66ujTgp1GYJBd+9F0AACAASURBVGtkfBlVGJ/ytp8Bfp4ViQqQjspxLOl4J90PwdUHHJNP\nkMGFhyL7IxlmZBQP6bg+pbuQY7qkO5LhXHhyZy7p6ZGUfNWLnd7eHBaG2JSmnvA7oubPh1tvhe9/\nn+5r3osbfy09H7qWbeugrwKq3vF6yp+AceNg7Fi9dOJEHV3o7Q0vudTWpt+Mv85rX5/+RaO9vf/2\n0aN6fVMTjBoV3u9/C0eO6Dm1tTBiRP9r9+3T4/X1OmIQi5aWMo4cgS1bkm+M19aqPK+9ltz50fDX\nxH3llfjypcqePfpOtmzR7X379Pn7c1b27q08/rsUKLb81tfriNyePalf29BQEfO62trEaysXIiKx\nv8tjx8YV5pwM51wI+LH3Vzp4LaomdwJb942DnY4j2xuZPLozXIMnYSW0t2uFFWzsd3bq/2yt+G1G\nRvGSrAGRSyMj3ZGMxx9XD5JcU1Mzh2XLcn/ffLF//0ze/Ob8ylDqeoLRo3XCgAhUVLBqlcYM2bdP\nG8cHD2oj+1OfCl/qN/QffVS/rT/8QSdnHz0KDz6oBkhra2qidHfDvfeGGxq+sQJ6j74++MEP+l/n\nXDgbP/pRIlfN84+flyp33JH6NeH7kvZ9kyFyqasvfMG/70U5rWvzTTHmN17DOh6h0EUJm3DF6DpX\nWRn9eUyefDK3355bWZJdJ2M+8G1gIXB8YNE5d1LMi4YKoRAj2w9wZt1TDO9axrjGVyA0RruLysoG\ndgdFYflyeOGF6Md8P9x0sDkZQ4PBuEvlinRHMg4fVr/tRTkOYLpmzWHe8Ia5ub1pHtm48Wi+RShd\nPeF/wI2Nahn09ODKyuno0LVaJ01So+GEE3SCc3BUYtw4dVlqa1O3jyef1GuOHFH3qVGjYNMmjS0S\ndOmJRUeHdmideCLHJ7TW1amhMnmybre2DhwZcU4nm/f1qStXvLqlvf0Yw4aNjumSFYuqqsG5IYVC\n+oyyoc8qK/tHuBo+PLzd2trCmDGlMzu4GPM7enR6EcqOHDnChAmTYh4fMya5766Q2LMHpk+PPhG+\nt7cBGJtTeZJ9Lb8E/g34LnAF8BGgCO271BHnKO/rYnhPC7jRdI+eBFe/Ca67TkvfyJEJ0+jp0Urs\nk5/sv7+8nLQiG6TqLmUUH4VmZKQ7khEKaQz+Sy7JvEzx6Olpyfk980lPTwrd3dmjpPUEBw+qT8/4\n8TBnLqxSZV9ersa27zce/IZEdAI16KjHuHE6F6O9Ha65Rg2DBx/UuQzRJnJHsn+/9vS///2w0JvP\n+uijav989rOxr+vuhk98QuX52c/iGwPV1atZnGufizxSXb3W8jtEqa7eOOTy+p3v6NJt11478Fh1\ndQO6XmruSNbIGOGc+7sXOaQWuFNEXgG+nkXZ8o+nDborRrP6lBtg4ULm1Hcza9w4daZNgbKylC+J\nic3JGFoMJoRtrkh3JCMUym8MfCOnlKaeCIXCf1dcAb29uFPmH+8ICP6H2J0Dfi99VZUaGclcE0m0\n7zSZicyhkN6rrCy3nReGYWSWESPULfOPfxx4rLFxTGHOyQC6RKQMeFVEPgvUA4Nw9CkuHIEwPqH4\nXci9vTpcFazk6+vh0CGiTqaaOTMpj6t+mJExtCgGdyn/XgcPRi/HsWhq0gG/XE8krK8fUVSTFwdL\nU1OccEC5ozT1hHOEXBkbehfy3Pa3sXDX/7F0vbBzJ/zqVzpSMXy4uil1dKhbkr8IXZD9+/W79sOp\nShrxRQZjZPj3NCPDMIqX00/XkNF1dQOPtbfnfgGYZI2MzwEjgX8CvoEOhd+S6CIRuQr4PlAO/Nw5\nd3fE8TnAfcAUdE3Um5xzdYHjY4EtwGPOuc96+84F7gdGAE8An/PjsmcNR9I175o18MQT/fe9+qoq\nkIcfHnj+uedGH9aKR7JKwO8JMyOjuChEI6O8XF3+1q7Vv2RZvVp7ZlOZvJoJamqmJhXzf6jQ0jKJ\nD3wg31KUqJ5wDofQJ5WcMrub1vXQXKXRzXbt0vkWY8boiF5Tk07uHhvHLdr3wLWRDMMwUuVNb9K/\naFRXH86tMCRhZHgLKn3AOXc70Ib62SbEu+6HwFuAOmCViCxxzm0JnPYd4EHn3AMiciU6afDmwPFv\nAJHLEv0Y+DjwMqo8rgKeTEamdAmOZLgErTu/h+qjHw1X+H//O+zYAR/7WP9zf/97HSJPW64EIxll\nZapgzMgobKI1JArNyCgrg09/OvEqxJFUVWkD6/rrsyNXLJYvb+Cii+bm9qZ5ZOXKA8Cpebu/6Qko\nLwux6MwOtr4Eb3+H8MoxXaH61FN14nZlpc6NuPHG8DoZkXR16ZQOyJ+RYRiGkSkSGhnOuT4RuTSN\ntM8HdjrndgGIyCPAdWiPk89CwAsUx1LgMf+A1xM1FV3MaZG3bzow1jm3wtt+ELieLCsPTyD9n8Bd\nqq9PD8+eHT5t0iRVHLNm9T+3okInhT/7LCnF9N+3T91Pli7ViCU+M2bAWWfpbzMyipdk52Tkusdx\n/PhwAyhZxo3T8h9Z9rPNlCldOb9nPtm5Mw+LkQQoaT3hfbAOOf7tjhknVFXpqMSYMTofr7JSje4Z\nM3RCeDSCcUTKyjLnLpVoXYlBLvtkGIYRlWTdpdaKyBLg98Axf6dzLsrUkuPMBPYGtuuACyLOWQ+8\nGx0qfxcwRkQmAUeA/wFuAoLR32d66QTTnJlkHtKm/0gGCY2M8vL+p8RqEIroXI3t29XgSLaCP3wY\nGho0tOGECbqvt1fTCBoZNuxdHBTDnIx0KRY5U+XZZ2H9+nxLEWb//qk5n9AXhZLWE4jgQvoxB+c4\n+Gv1JTMq4Z/rn5fqSIZ/3pEjqiNA9cXIkeHtaBw5opPNy8vjnwdw6FBlwnOGEpbfoUsp5RWgpSX3\nUViSveNw4BBwZWCfA+Ipj2S4HbhHRG5Fh7vrgT7g08ATzrk6SbOFIiK3AbcBTJ06lerq6pTTOLe1\nlVFAd083jfv301lRQWNDA2UbOzgUw6l27dqJ1NaOpro6vIzkhg2TqK8fQXV1/5k4r746w1vhtZKr\nr25g6tTkfKcaGoZz4MA03vCGRqZN01X91qwZz8aN41i6tBYR2LFjBu3tw+juLuOll5JLu62tLa3n\nVKwUSn4PH66kpmYGq1btZ//+dtavn8ju3aOort4b85oNGyZRWzsy7jmRDDa/O3aMpq0ttUrqhRcm\nM3ZsD3V1uV3HoaOjijVrsrdc64oVE+nqKmfixMJYVryysrcQynJJ6onzOjqoxNHd08vWrVtpaW6m\ncfs2mptPoLy8i8rKDrq6OikrczQ3T2fZss1MmjRw5Mk52L17LuXlrdTUjGH16gOUlUFNzRSWL69n\n/PjEo1U9PUJt7YnU1ISfx7ZtY6iq6mPVqvaY13V2lrF27UQqK/u4444jce/R3T2Zxx+vSSjLUMHy\nO3QppbwCTJ48krFjq3N6z2RX/E7KvzaCemB2YHuWty+Y7j60hwoRGQ28xznXLCIXAW8UkU+j0Ukq\nRaQN7cmaFS/NQNo/BX4KsGjRIpdWLORRowgBFRVVTJs2DebOZVrfVF531mnE6jZsa9PepMWLw+tP\nHT2qEaQWLz6l37nbtukcjqNH4ZJL5ibt3lFTo6MfF1wwl3nzdF9lJbS0wMUXz6OqSqMLtLVp+hde\nODepGOvV1dVDLmZ0PAolv42NsGEDnH/+XBYs0B7FsjJYvPjkmNe0turIVbxzIhlMfru7obo69egz\nnZ3qIpLqXI7Bsnv3bub5H0cW6OjQiEFZvEVKHDq0I+9luWT1xPDh9CAMq6piwekL2P7SYcadvpDx\nK8czdaoujOcvBL5iBVxyySVMmzYwmVAInntOR6N7e7U+AKithUsvnXt8Mb1EnHFG/0ALDz+s621c\ndVXsaw4dgrvv1pHxO+6Iv3jTyy+/zAUXRA42DV0sv0OXUsorwIYNDTnXE8mu+P1LtEeqH865j8a5\nbBUwX0TmoRX8B4EPRaQ7GTjsnAsBd6ARRHDO3Rg451ZgkXPuK952i4hciE7o+zDwg2TyMGg8X6ZE\nE7+jTbKL5y6V6nB48Nzubl1NvLdXjY7aWl2IqaJClVVPj56zb19SawZSV3cyjz2W+Lx8MG3a4FZH\nj8arr85g06bMppkOR4/CypXh1XY3bVLD4+mnY7+3TZs0RF2sleSjsWHDuLRX3O3q0vJ1/vlw5pnJ\nX3fggL67yy5L777pMn58M+eck730m5s1QtAVV2TvHqmwfXtLvkUoeT3RF4Kt22D/oQpeeXYE+/bB\nsWPqirRnj9b1dXVw333Ro0uFQloP1NVpXbBmje6rrYWXX44fkSoeo0eroXOatwZXYyMDIq/5EbAm\nTw6fF4uGho6E5wwlLL9Dl1LKK0BDwyAiDaVJsr4Pfwn8Ho76xe6Ld4FzrteLlf40GprwPufcZhG5\nC1jtnFsCLAa+LSIOHQb/TBKyfJpwaMInyeak78CEvrDDPBk1MgYz4W77dlVEoA3VmhrYvVu36+o0\nzZ4e2LIlZhL96OycwvDhqcuRC0aPJumevGRpbj6hIPzqu7rUD/rgQTUqDh3Sxslvf6uNg2hs26aN\nl7//Pfn71NRM4HCaEex6erRslZdrGM5k2bFDDY2eHM9LHkxek2Hr1vAKzoVAW1tBCFPSeqK7u4xX\nN3ay9+BUnl89kv+/vTsPk6uq8z/+/lb1ks5GZyMEEpJAAhIQIkQUFcg4M4iOo4IrzqPg8mMcdWbU\ncUZ4mHF+MuM47iu/UWZUBscN48YqhqUJMCEskpUYCCGYhEBIyB6SdHd9f3+cU+nb1dXV1d1VXdvn\n9Tz19K1bdzmn+/b91rlne/75ULv8/POhoADhf/zmm/N3xM5kQmFk69YwYEJbW1j31FOwZMng51NK\nSt477747xI5cqdTwziEikqvY5lI/T743sx8D9xWx362E4QOT6z6dWF4ELBrgGNcRgkX2/cPAIJ6l\nDt3ezlGsziygq3MS07cvh6Znsa7CbbC7u/PPcDxQIWMoNRkHYhPbj38cxozpPZLUNdeEUUze/Obi\nZ2m+995lnHvu+cUnZIR85zthNJaLLy7tcZcsWcF551U+v888E55uvv3t4SnizTfDt78dhro8v5/k\n/frX4cvHxz5W/Hnuuedpzj9/1pDSuH8/fPnLocnF2WcXv99XvgJz5w5+LpjhGk5ei/H1r8PMmSM/\nNG9/7rlnK1DZR3KNGifo7sZwJnRt4xUv3MaLR7+cuTNTNB8d7sHHHx8myOruDpPz/eAH+YewPXQI\nvvjFngdOb31rqIm+6Sb4m78Z/MhuScmY1NUVJoF9X07jtltvDQ8vRERKZahdzecCRw+4VY17cP+p\nLOFEDnVN4HW7H8H3pOluhz2pdrpeCDfu5pwJFA8fHlxNRnd3WB5MTUb2WPvj+C1jxoS0JANJc3N4\nWlZMM6mstjYveZOkUmhrC7/TUteytLR4VdTctLaGv11bW8hja2vPpFj5CqwQPs/9mw8knfZBbZ97\nvlQqXFODOYZZuBaHet6hGk5ei2E2+N9FOQ21GVyZNUSc4MUXMTKMzuxltxkbZ7yGzJhxpHeH6yOd\nDv/TnZ3hf2jUqJ572aFDvR8CZf+nu7p6fg7l/66Q7PDmucfTRHwiUmrF9snYS++2ts8CnypLiqpI\nxsMdN5Nq4sk9R/PjMR9kx+NG++dDhEil4JWv7Fv1PWNG7/el7pOR/UKxaVP/waeehg5NjhffCLJf\nAgbK80j+fYdynWb3q5frMKm7W3MK5GrUOBHaAhqbW07kqVf9JTu2ziWV+H/pb1ja9etDp+zkYXbt\nCrUfWUP9vyskk8l/7dbr/6qIVE6xzaWqosFvpRjOoa40TePaaG+BP/uzcEN+/HE499ww0VJSbjv6\nUvfJOOaY0Ezj0KEwo2w+9RQw0un6LmTkmydjoELGSP99h9p3qL8vNLWumFmUG03Dxon4D7yvdSI0\nNZPJ9Dz4yRYqkj+z/0u746jOf/RHobbv5pvDqGXJ/+tyTJLX371DM36LSKkVW5NxEXCXu++O79uB\nhe5epWMRlUhsy+SpNE5oejR6dGhf7h465r7sZeQdjjCp1IWMVArmzx94u3opZGRnLm8UuV9GCm0z\nkmkC1WRkqZDRV8PGiagrFaq0kwXrZOEi+R56fp51VogrN93Uu9YjuU2pazJym/lmz1WP/6siUjnF\nfrX952zgAHD3XcA/lydJ1eNIMGhtw7FeASMbRIp5wu6ef/1QO34Xo79z1qJ6by6V74tEMTUZI0k1\nGb3Va76GqSHjRM8/YwpL2ZFrI1kzmVujAb3v/dlrKbc2oVw1GfmOl1vAEREZrmK7kuW7xVVJl8fy\n6XboJs2hTBOOHfnil5yQrJgn7AP1yUgGmVKpp6dS6fTID4E6kvprLlXo2qqVmox6/OLirpqMfjRm\nnMhAN8auw238YXOa558PHbZfeCFcI93dYQS5AwfC+tyajOz/R7ZZaPI+UK6ajP6aS9Xb/6qIVFax\nAeBhM/sKcE18/xHgkfIkqXq80DmeQ7Sy53AbGT9Ac3PomHfHHeFL4O9/D7fdBkcPMH7Kgw+GyY5y\nJ7r73e/CmOipFNxyS2nHKF+1KozJ7h5mkD3hhIH3qVb1XpORqxqbSw31iWo9tvPO/i5UyOijIePE\ni11NdDGGB/efxsP3jmdrdxjxb8uWMKfM9u3hmtm/P7wvtpCRb5tSUMdvERkpxRYy/hr4J+CnhNFD\nFlPchEg1LZXpAmBy2z4c44knQqHghz8MQxJu3gzbtvUeJvbgwRBcssFh8uQQXLq6wvqkzZtD4SOV\nCoWXvXvDRGyFHHtsccPSPvlkmMDuoYdg0iQ444yB99mw4XiWLh14u5G2YkX4vW7fXtrjDje/J50U\nxrIfrqE2l6qVmox6LWTUW75KoCHjBIR/iuZmmDq9hcnj4ZRT4Ec/Cn3n/vzP4fWvh898Jsy0vWVL\niAebN8M998DixeFa2rw5DObx29+G2o/vfz8c0x3uv7/w9TZ5MpxW5KwgDzwQYsjGjb3Xd3b2HcRE\nRGQ4ih1daj9wRZnTUnUsE9qrZJpa6KaL9vZQGJgzB/7kT+D22+GP/7j3kIMbNoSAMGdOGGL2mGNC\nwDhwIIxKlXTXXWEm2KamMBHbI4+EfebM6ZsW91BzcuaZcOqpA6d90SKYPj3MCt3cHPYbSDq9t6jC\nyEjbuzfMnFtMHgZjOPl98skwO2851MvoUuV4ClsNss3YVJPRW6PGiSw3C3PejIcJE8J9fdKkcD8/\n/vhQu+Ee4gaEe/0TT4Q5M44/PtSIHz4cChpNTTB7djhOW1u4l/dn69awX7H3x82bw4zi+bafOXPw\n+RYR6U+xo0stBt4eO/JhZhOAn7j768qZuMqL35LSaRzjmGNC29pt28Lwtdu2hS/+ydqHbO3GS14S\n2uTef3/4guwenlgl7dkTajk6O0PgOXw4fJnrr9nU/v19m1z1JzvxUyYTzv2Nbwy8TyZzWlU+nc3O\nZP7tb5f2uO4vHfIX4Gx76b/7u9Kl51/+paefjjv88pf9f0HPFjIGM+N3JnPusP6+7vCFLwy+oPH1\nr+cfzaacOjvPKes5Mxm47rrSNnEcjqam+axaVdk0NGqc6Oh+DW3sY3nnqex8ehSp7eHev3s3rFkD\nN9wAjz4a1s2aBe9/f9jvoYfCa/Zs+OY3e463dCmsXQvvfGeoERnIb34Dy5ZR9N9/6lSYNw9eV9d/\nFRGpBsU2l5qcDRwA7r7TzOp/JtfIMZwUM2eGJ9hTpoSnU+vXh6CRfMpkFtrdnnxyeL9jB4wbF75s\nnXhi7+Pu3x+eZu3cGSbw27EjFDSOOy5/OvbuDZ8XY8eOMFFfa2t4MlaMgwcPM2pUlXxrSujuLj7f\ng3H4cCctLa1D2jeTCU0eSqm5ue+INIXkm3G+kOH+fVOp8KV6sAWV8eNHvpCxa9cB2tuH9rcthll4\nSp07EWelvPjiPqC90sloyDjxnE9lDrsYb3voHJMhPS5cG83N0N4e7ucnnxyaxk6a1DOP0tNP92yT\nnFupvT00f8pXo53Py17Wu0N5MaqxxlpE6k+xhYyMmR3v7n8AMLNZ9J7ZtT5lc2hGBmPKFJg2LTRX\nuvBCeOopOP/88FQoa+nSUBh405tC06murhAwRo2CD36w7ynuuy90JL/qqlBL8dxz8NGPDj/pX/hC\naKP7hjcUv09HxzIWLlw4/JPXiI6OpQ2W38b5+3Z0rGiYvAJ0dKwHCrSpGRmNGSeA8exmdtMWWqZm\naJ0UChX33Rfixcknw8tfHh4qLV8Ozz4b9tm+PcSH3AL4+PGhGW6xpk6FN76xdHkRESmVYgsZVwH3\nmdk9hF5u5wKXly1V1SLxaCh3noxse+zVq0PzqKyVK0OHuvvug8ceC+uSY6b3d4rsaEKlaq5UT/Nk\niEhNaMw4EctR7j1jm3d3h/v5mjVhi7Vrw0OnTZt6mn1u3BhqaEeNqkCSRURGQLEdv39jZgsIAeNR\n4FfAi+VMWLVwDDAypI4UFFKpMHLT6NHwv/8bmk25h3WjRoVq8CVL6LV9f4WMZIfaUnbm1XCEIjKS\nGjVOZG+z3RhuduS+mx2O9qUvDSNMPfhgeL3jHWH9gw+GkaayTWtFROpNsR2/Pwj8LaE+fjnwSmAp\n8NryJa3ymjKHAAfrXZMBoeP3q18dhlfdsyeMArJzZ6i6bmmBCy6A668PHbAPHAjt5++/v+85nn46\n/Cx1TUb2mCIiI6FR40Rvxq5d4b5++HC4B8+YETpwb98emtju2NHz4GncuOoZPEBEpNSKbS71t8DL\ngQfc/Y/M7CXAv5UvWdUh46HDN9CrJqOzE37xi7D89NMhcJxxRvi5YUOo0Vi8OFSZb9gQgksq1X8n\n0YkTe8/+XQqqyRCREdaQcSJURxtYio2bm3h2R+jgffhweLg0ZkzYbNKkcE++886eXceM0XwrIlK/\nii1kHHT3g2aGmbW6++/NrP4reTOZ0FzKIRMrxbPDi0KY92LfvjDfxVVX9XyWTvcOHNddF4LLpZfm\nP022f4f6ZIhIDWvIOGGENq/e1kYnTbjDCSeE+/mZZ/Z07J43rydOZP3gB3oYJCL1q9hCxmYzaye0\nsV1sZjuBp8uXrGoR7v6ZUaPB9xxZmy0INDeHAkI63bOcT3KbQlSTISI1rEHjBIAz9rijaGlJMXZs\nKFzs3NkTKzKZ/MNwZzIjP7yziMhIKbbj90Vx8f+a2d3AUcBvypaqKuGEvhibdozmqCl7Sad7P4Uq\n9kt8sV/41SdDRGpVo8aJLMeOxIfsz+yAHt/9bujknc/cuSOTPhGRkVZsTcYR7n5PORJSzVLmTJma\nYt48uO223qNGJYeg7U+xhYxS12SIiFRCI8UJy04FYql+77vbt4eJW/ONJHXCCWVLmohIRQ26kNFY\nwjd+M2fCJOszCshgCgTF1mSUqupczaVERMrPj/zMxouez7IPorq6wihT55wz8ukTEakUjWtRSHws\nZYRv7NmO3cmajKxqrMlQIUNEpLyyt1lPpfvUZGSHJu/uDiNNiYg0EhUyCnKa6aQ5c4gMfXt1J5tL\nFTyK+mSIiNSl0FzKyKT7VkOnUj0dvtXBW0QajZ6tDMBwDnca9xx8Bc/eA1u3wmOPwcGDYejaSZMG\nPob6ZIiI1L/sPTzZV6+zMyyrJkNEGo1uewWFb/zbmcwLB49h7JYwe/f27SFwrFsXZvqG0jSXKvU8\nGarJEBEpPwc8ccPNLiYLGarJEJFGU9bmUmZ2oZmtM7P1ZnZFns9nmtmdZrbSzDrMbHpi/e/MbLmZ\nrTGzDyX26YjHXB5fR5czDxACyPz58O53w+zZcP75oQPf5Mk9AaTg/iNck1HMiFciItWg1uNEF00c\npoVtu5rZvz+sy2Sy6VBNhog0rrLd9swsDVwD/CmwGXjIzG5098cSm30JuN7d/9vMXgt8DngPsBU4\nx90PmdlYYHXc95m431+4+8PlSnvWM34MexnH/sMtPPxwGCFkw4aedrYtLfDcc7B7Nzz6aP/HOXQI\njj66/3HSs/btgylTSpd+FTJEpJrVQ5w4QBsbmclDzx7PswZtbbBiRfgsleq576smQ0QaTTmfrZwN\nrHf3DQBm9hPgzUAyeMwDPhGX7ybMFIu7J+dGbaVCHdT3Mg7HSJkzYQJMnw5jxoQajIMH4dRTYe1a\n2LQJTjut8LFmzYKpUwc+5+mnDz/d6o8hIjWi5uMEwC38OS96G+kmaG2FY44JseINb4Bdu0IBY+bM\nSqVORKQyylnIOA7YlHi/GXhFzjYrgIuBrwMXAePMbJK77zCzGcAtwBzg7xNPpwC+b2bdwM+Bf3Uv\n39fqFBlGNWc48UQ491y4++5QoNi7F97zHnjySbj3Xvjnfy7ueO7wwx/Czp35P3/66dKlXTUZIlLl\naj5OGM5hmpncto+jpk5k9OjwsOi552DBAhg9uhxnFRGpfpVuJfpJ4FtmdhmwBNgCdAO4+ybgdDM7\nFviVmS1y9+cIVeBbzGwcIXi8B7g+98BmdjlwOcDUqVPp6OgYdOKyIamzu5vly5+ju3s3Tz01laVL\n9zB2bDfLlm1l06Y2Nm48io6O4koHBw6kueOOGUyefIhx47oGnaZipVLOjh276egootNItG/fviH9\nnmqV8lu/GimvUPf5re44ATgpDr14mEMv7iWTyfDEE8/ywgut3HvvH2htzQwhy9Wrzq+1PpTf+tVI\neYXK5LechYwtwIzE++lx3RHxqdPFALFN7VvdfVfuNma2GjgXWOTuW+L6vWb2I0J1e5/g4e7XAtcC\nLFiwwBcuXDjoDNzNPTjG4cwonv/DVA4enMr27fDkk0cxcyY888wsNm8Oo02tWze7qGN2doamU5dc\nAiefPOgklVVHRwdD+T3VKuW3fjVSXqGm81vzcWIVPwOgi1bMxnHUUXDSSUfx7LNw3nmzaGsb9CGr\nWg1fa0Oi/NavRsorVCa/5SxkPATMNbPZhKDxLuDdyQ3MbDLwgrtngCuB78X104Ed7v6imU0AXgN8\n1cyagHZ3325mjKtwwwAAGZtJREFUzcAbgTvKlYFuUoziIGe1PcZzp57GGWeEZlKvfjW86lWhOdK2\nbTBqFIwfX/xxp02D448vV6pFRGpGzceJDCmy7bDyzfgtItKoylbIcPcuM/socDuQBr7n7mvM7Grg\nYXe/EVgIfM7MnFAN/pG4+ynAl+N6A77k7qvMbAxwewwcaULg+M9y5SFr4tjDHP1SuOACWLYs9M14\n5zvDZ1OmhNFELrmk3KkQEakv9REnwumNnmHIk/NkiIg0qrL2yXD3W4Fbc9Z9OrG8CFiUZ7/FQJ9x\nltx9P3BW6VOaXwgdjluqV7Ao1YR5IiKNrtbjRHbS1mSMUOFCRKSCQ/7VhhApMvREjNwJ8zSztoiI\ngKm5lIhIggoZxTAjldJM2iIikp/Tt7mUiEgjUyGjCBnSmIUA4g7pdM9nqskQEWlcfqSmu+80HIoN\nItLIVMgooJkwoazhRwoZoMAhIiJZjic6fouISFDpyfiqWjcpuknzxMGZjFkbRpJyV8dvEREJQk2G\n090N+/fDjh2wdWv4TA+kRKSR6etyAQdpw4HNByezZQs88wxMnKiO3yIiEjTTCRiZTIgHmUxPIUNE\npJGpJqOAUPNt7M2MwfaHvhinnELdzeAqIiJDYzFSHGhu59xzobNT82SIiIAKGcVJGU1N8IEPhKBx\nzDE9H6kmQ0SkcXWTppsUra3O5MmwbZtigogIqJBRlK7uFOk0zJhR6ZSIiEg1Wc9cwhwZRktL7z57\nKmyISCNTn4wC0mQwnPaxXZx0Uv5tNJqIiEjj2sqxAIxvN6ZM6T3EuQoZItLIVMgYkNPS7DQVqPNR\nIBERaUwpMkAoXJiFmgzFBBERNZcqSioNzz8P11zT97N9+0Y+PSIiUh0sFjKyVJMhIhKokFGAEUYO\nmdLexeTJYZ6MXFOmwHHHjXjSRESkCqRyChnZWu9Ctd8iIo1At8GCHDDax3ezYAG84x2VTo+IiFST\nNN04kIq1FjNnwjnnwPz5FU2WiEjFqU9GAdmZXFOmam8REelrKs8BMHF8FwDNzXDSSTB9eiVTJSJS\neSpkFMFSKmGIiEhfKTIY9HoSpYdSIiIqZBSUjROmmgwRESlI45mLiCSpkFFQCBqqyBARkXyyRYvk\ngyg9lBIRUSGjKKm0KWiIiEheuXUYihciIipkDMBI4Uw6qqvSCRERkSqmgoWISG8qZBQUn0+ZajJE\nRCSHJ+ow1FxKRKQXFTKK4Or4LSIieYUwqhAhItKbJuMrwLEjLxERkfyMlmZnypTwbtKkyqZGRKQa\nqJBRDFdNhoiI9K+5CT7ykUqnQkSkeqi5VAGW6JMhIiLSL4UJEZFeylrIMLMLzWydma03syvyfD7T\nzO40s5Vm1mFm0xPrf2dmy81sjZl9KLHPWWa2Kh7zG2YjUwJQOUNEpPTqKU6IiEiPshUyzCwNXAO8\nHpgHXGJm83I2+xJwvbufDlwNfC6u3wqc4+7zgVcAV5jZsfGz/wD+DzA3vi4sWx7yLImISGnUQ5zI\nUpQQEemtnDUZZwPr3X2Dux8GfgK8OWebecBdcfnu7OfuftjdD8X1rdl0mtk0YLy7P+DuDlwPvKWM\necDI4GgIWxGRMqiLOBHSU+4ziIjUlnIWMo4DNiXeb47rklYAF8fli4BxZjYJwMxmmNnKeIzPu/sz\ncf/NAxyzhELU0BC2IiJlUfNxIlu2SKmHo4hIL5UeXeqTwLfM7DJgCbAF6AZw903A6bH6+1dmtmgw\nBzazy4HLAaZOnUpHR8egE9fGixymhee2PU/69wfo6Hh20MeoJfv27RvS76lWKb/1q5HyCnWf3+qN\nE4nqix07X6CjY8Xg9q9BdX6t9aH81q9GyitUJr/lLGRsAWYk3k+P646IT50uBjCzscBb3X1X7jZm\ntho4F7g/HqffYyb2uxa4FmDBggW+cOHCQWfgbu4G4Ohpx3HKKcewcOFLBn2MWtLR0cFQfk+1Svmt\nX42UV6jp/NZ2nHDnJh4GYOLEiSxceOLg9q9BNXytDYnyW78aKa9QmfyWs4L3IWCumc02sxbgXcCN\nyQ3MbLKZZdNwJfC9uH66mbXF5QnAa4B17r4V2GNmr4yjhbwX+HUZ80A3TWorJSJSHnUQJ0J8SClM\niIj0UrZChrt3AR8FbgfWAje4+xozu9rM3hQ3WwisM7PHganAZ+P6U4BlZrYCuAf4kruvip99GPgv\nYD3wJHBbufIQcwKonCEiUmr1EidilCjnKUREak5Z+2S4+63ArTnrPp1YXgT0aUPr7ouB0/s55sPA\naaVNaSEhcKiQISJSejUdJ9zJFjFaWzNlP52ISC3ReBgFhHKFa2hCERHJK/v86fxzOiuaDhGRaqNC\nRkEOGD52rGoyRESkD4/FjAntFU6IiEiVUSGjCDZmTKWTICIiVUwPokREelMho4DsEyp3BRAREekr\n25pWMUJEpLdKT8ZX1bpJs4dxpPZUOiUiIlKNTCMQiojkpZqMAl5kFPsYS2enAoiIiPTm3lOToSAh\nItKbChlFUvwQEZH+pBRNRUR60W2xgBR+pCpcRESkL0MT8YmI9KVCRhHMVJMhIiJ9ZQcIMUVTEZFe\ndFssIHbnq3AqRESkWlnOTxERCVTIKMATYUM1GSIi0h/1yRAR6U23xQJMz6ZERKQ/nu2zp757IiK5\nVMgowEm0t1V5Q0REcqh4ISKSnwoZBfWEDxUyREQk15E+GYoRIiK9qJBRBAUPEREpRHFCRKQ3FTIK\nsiPzZCiAiIhIUnbGb8M1hK2ISA7dFkVERIbC1SNDRKQ/KmQUSTUZIiKSnylGiIjkUCGjCOk0zJlT\n6VSIiEi1yZACXIUMEZEcKmQU4aKL4IwzKp0KERGpNodpBWBUa4UTIiJSZVTIGICjplIiItIfJ003\nx07NVDohIiJVRYUMERGRYTA1lxIR6UOFjAEYqskQEZH+meb9FhHpQ4UMERGRIdNTKBGRfFTIKIJq\nMkREpI/kPBljRlcuHSIiVaishQwzu9DM1pnZejO7Is/nM83sTjNbaWYdZjY9rp9vZkvNbE387J2J\nfa4zs6fMbHl8zS9jDlQJLiJSRrUfJ+I5m5rKfQoRkZpStkKGmaWBa4DXA/OAS8xsXs5mXwKud/fT\ngauBz8X1B4D3uvupwIXA18ysPbHf37v7/PhaXq48ZAsYKdX3iIiUXK3HCfc4AiFgTQoUIiJJ5bwr\nng2sd/cN7n4Y+Anw5pxt5gF3xeW7s5+7++Pu/kRcfgbYBkwpY1rzUispEZGyqp84kUqP9KlFRKpa\nOQsZxwGbEu83x3VJK4CL4/JFwDgzm5TcwMzOBlqAJxOrPxurx79qZmWbAilbk6E+GSIiZVHzceKI\ntAoZIiJJlW5E+kngW2Z2GbAE2AJ0Zz80s2nAD4BL3T0709GVwLOEgHIt8ClCFXovZnY5cDnA1KlT\n6ejoGHIiV6xYTnPzriHvXyv27ds3rN9TrVF+61cj5RXqPr9VGycyh7riwyjngQeX8fSmQ4PavxbV\n+bXWh/Jbvxopr1CZ/JazkLEFmJF4Pz2uOyJWcV8MYGZjgbe6+674fjxwC3CVuz+Q2GdrXDxkZt8n\nBKA+3P1aQnBhwYIFvnDhwkFn4EYexoD58+czhN1rTkdHB0P5PdUq5bd+NVJeoabzW9NxovtgJzfw\nBADnnHMOs2YNaveaVMPX2pAov/WrkfIKlclvOZtLPQTMNbPZZtYCvAu4MbmBmU02s2wargS+F9e3\nAL8kdPZblLPPtPjTgLcAq8uVAcM1upSISPnUfJwQEZH8ylbIcPcu4KPA7cBa4AZ3X2NmV5vZm+Jm\nC4F1ZvY4MBX4bFz/DuA84LI8QxD+0MxWAauAycC/li0PsUuf+mSIiJRezccJd7K99xQnRER6K2uf\nDHe/Fbg1Z92nE8uLgEV59vsf4H/6OeZrS5zMASl4iIiURz3ECUNxQkQklwb2LkA1GSIiUpgChIhI\nPipkiIiIDIP67omI9KVCRhE047eIiOTyWLowFTNERPrQ12cREZGhcNekrSIi/VAho4CDjKp0EkRE\npAaokCEi0psKGQVk4q+npaXCCRERERERqSEqZAyghU7S6UqnQkREqk1PnwwREcmlQoaIiMgwqbmU\niEhvKmQUQcFDRERERKR4KmSIiIiIiEhJqZAhIiIyZAa4arxFRHKokFGAxj8XEZGBmSZtFRHJodui\niIjIEGVn+9bDKBGR3lTIKCDEDB9gKxERaUSeycYHV02GiEgO3RYHZHpCJSIifbnj8XGU4oSISG8q\nZIiIiAxRbCylmgwRkRy6LQ5IzaVERCQP72kupZoMEZHeVMgoSNXgIiKSn3s2SqCaDBGRHLotDkDl\nCxER6Y+GOhcRyU+FDBERkWFSTYaISG+6LRagJ1QiIjIQU58MEZE+VMgQEREZJtVkiIj0pttiAZqM\nT0REBuKoxltEJJcKGQVkJ1maM6fCCRERkarjiWdQKmSIiPSmQkYRxo2rdApERKTqxFJGChUyRERy\nlbWQYWYXmtk6M1tvZlfk+Xymmd1pZivNrMPMpsf1881sqZmtiZ+9M7HPbDNbFo/5UzNrKWceRESk\nfGo9TjiGoz4ZIiK5ynZbNLM0cA3wemAecImZzcvZ7EvA9e5+OnA18Lm4/gDwXnc/FbgQ+JqZtcfP\nPg981d3nADuBD5QrD47myRARKZd6iBPZGNHUVK4ziIjUpnI+ezkbWO/uG9z9MPAT4M0528wD7orL\nd2c/d/fH3f2JuPwMsA2YYmYGvBZYFPf5b+AtZcyDiIiUT13ECT2MEhHpq5yFjOOATYn3m+O6pBXA\nxXH5ImCcmU1KbmBmZwMtwJPAJGCXu3cVOKaIiNSGOokTGoVQRCRXpSt4Pwl8y8wuA5YAW4Du7Idm\nNg34AXCpu2dsED3rzOxy4PL4dp+ZrRtiGif/wC7bPsR9a81koFHyCspvPWukvMLw8juzlAkpg5qI\nEz+29zTK9ab/rfrWSPltpLxCBeJEOQsZW4AZiffT47ojYhX3xQBmNhZ4q7vviu/HA7cAV7n7A3GX\nHUC7mTXFp1R9jpk49rXAtcPNhJk97O4LhnucWtBIeQXlt541Ul6hpvOrOFFjGimvoPzWs0bKK1Qm\nv+VsLvUQMDeO8tECvAu4MbmBmU02s2wargS+F9e3AL8kdPbLtqvF3Z3QJvdtcdWlwK/LmAcRESkf\nxQkRkTpVtkJGfIL0UeB2YC1wg7uvMbOrzexNcbOFwDozexyYCnw2rn8HcB5wmZktj6/58bNPAZ8w\ns/WEtrffLVceRESkfBQnRETql7mrw1ohZnZ5rFKve42UV1B+61kj5RUaL7/VppF+/42UV1B+61kj\n5RUqk18VMkREREREpKQ0R6mIiIiIiJSUChn9MLMLzWydma03sysqnZ58zOx7ZrbNzFYn1k00s8Vm\n9kT8OSGuNzP7RszPSjM7M7HPpXH7J8zs0sT6s8xsVdznG3GSqyGdowR5nWFmd5vZY2a2xsz+ts7z\nO8rMHjSzFTG/n4nrZ5vZsnjOn8bOr5hZa3y/Pn4+K3GsK+P6dWb2usT6vNf4UM5RojynzexRM7u5\nAfK6MV5ry83s4biuLq/letbfdVUtrIFiRDx+w8QJa8AYEc+hOFFL17K765XzAtKESZ1OIEzwtAKY\nV+l05UnnecCZwOrEui8AV8TlK4DPx+U3ALcRJqd9JbAsrp8IbIg/J8TlCfGzB+O2Fvd9/VDOUaK8\nTgPOjMvjgMcJMwHXa34NGBuXm4Fl8Rw3AO+K678N/FVc/jDw7bj8LuCncXlevH5bgdnxuk4XusYH\ne44S5vkTwI+Am4eSjhrL60Zgcs66uryW6/VV6LqqlhcNFCPi8RsmTtCAMSIeV3Gihq7lit8Eq/EF\nnAPcnnh/JXBlpdPVT1pn0TuArAOmxeVpwLq4/B3gktztgEuA7yTWfyeumwb8PrH+yHaDPUeZ8v1r\n4E8bIb/AaOB3wCsIE+k05V6nhNF5zonLTXE7y712s9v1d43HfQZ1jhLlcTpwJ/Ba4OahpKNW8hqP\nuZG+waPur+V6evV3XVU6XXnSOYsGjBHx+A0RJ2iAGBGPqThRY9eymkvldxywKfF+c1xXC6a6+9a4\n/CxhyEfoP0+F1m/Os34o5yipWCX5MsKTm7rNb6wWXg5sAxYTnrLs8jDsZ+75jqQlfr6bMHTnYH8P\nk4ZwjlL4GvAPQCa+H0o6aiWvAA781swesTDrNNTxtVynavV31hDXWSPEiQaLEaA4ATV2LZdzxm+p\nMHd3M/NaP0eShRl/fw58zN33xCaEI5aWkcyvu3cD882snTDp2EtG4rwjzczeCGxz90fMbGGl0zNC\nXuPuW8zsaGCxmf0++WG9XctSner1OmuUONEoMQIUJ6jROKGajPy2ADMS76fHdbXgOTObBhB/bovr\n+8tTofXT86wfyjlKwsyaCYHjh+7+iyGmpWbym+XuuwgzGJ8DtJtZ9uFA8nxH0hI/PwrYUSCN/a3f\nMYRzDNergTeZ2UbgJ4Sq8K8PIR21kFcA3H1L/LmN8OXgbBrgWq4ztfo7q+vrrBHjRAPECFCcqMk4\noUJGfg8Bcy2MKNBC6NBzY4XTVKwbgUvj8qWENqnZ9e+NowO8Etgdq8NuBy4wswlxBIELCO0NtwJ7\nzOyVccSB9+YcazDnGLaYhu8Ca939Kw2Q3ynx6RRm1kZoV7yWEEje1k9asml8G3CXh0aTNwLvsjAK\nxmxgLqGzV95rPO4z2HMMi7tf6e7T3X1WTMdd7v4X9ZhXADMbY2bjssuEa3A1dXot17FajRN1e501\nUpxopBgBihPUapwo1GGjkV+EXvSPE9o4XlXp9PSTxh8DW4FOQtu4DxDaA94JPAHcAUyM2xpwTczP\nKmBB4jjvB9bH1/sS6xfEi/pJ4FtwZPLGQZ+jBHl9DaF94kpgeXy9oY7zezrwaMzvauDTcf0JhBvi\neuBnQGtcPyq+Xx8/PyFxrKtiGtcRR48odI0P5RwlzPdCekYNqcu8xnOuiK812fTU67Vcz6/+rqtq\nedFAMSIev2HiBA0aI+J5FqI4URPXsmb8FhERERGRklJzKRERERERKSkVMkREREREpKRUyBARERER\nkZJSIUNEREREREpKhQwRERERESkpFTKkqplZu5l9OPH+WDNbVMk0DYWZLTSzVxX4/C1m9umRTFMh\nZtZhZgsKfP4lM3vtSKZJRCQfxYnKUJyQgaiQIdWuHTgSPNz9GXd/W4Htq9VCoN/gAfwD8P9GJikl\n8U3gikonQkQExYlqpTjR4FTIkGr378CJZrbczL5oZrPMbDWAmV1mZr8ys8VmttHMPmpmnzCzR83s\nATObGLc70cx+Y2aPmNm9ZvaS3JOY2fnxHMvj/uPiU6UlZnaLma0zs2+bWSpuf4GZLTWz35nZz8xs\nbFy/0cw+E9evMrOXmNks4EPAx+Pxz80590nAIXffHt+/3cxWm9kKM1sS16Vj/h8ys5Vm9peJ/T8V\nz7XCzP49rpsffwcrzeyXcabP7JOnz5vZg2b2eDYtZtZmZj8xs7Vm9kugLXHe62J6VpnZxwHc/Wlg\nkpkdU5o/s4jIkClOoDghVagcszHqpVepXsAsYHW+98BlhBksxwFTgN3Ah+JnXwU+FpfvBObG5VcA\nd+U5z03Aq+PyWKCJ8FTpIGHmzTSwGHgbMBlYAoyJ23+KntlWNwJ/HZc/DPxXXP6/wCf7yeP7gC8n\n3q8CjovL7fHn5cA/xuVW4GFgNvB64H+B0fGz7MycK4Hz4/LVwNfickf2XITZTe+Iy58AvheXTwe6\nCLOBngUsTqStPbH8n8BbK32N6KWXXo39UpxQnNCrOl9NiNS2u919L7DXzHYTggCEG/Dp8cnRq4Cf\nmVl2n9Y8x7kf+IqZ/RD4hbtvjts/6O4bAMzsx8BrCAFlHnB/3KYFWJo41i/iz0eAi4vIwzTg+Zy0\nXGdmNySOdUHMT7YJwFHAXOBPgO+7+wEAd3/BzI4i3OTvidv+N/CzftI3Ky6fB3wjHmOlma2M6zcA\nJ5jZN4FbgN8mjrMNOLaI/ImIVJLihOKEVIAKGVLrDiWWM4n3GcL1nQJ2ufv8Qgdx9383s1sIT23u\nN7PXZT/K3RQwwlObSwZIUzfF/Y+9SAgG2bR8yMxeAfwZ8IiZnRXP+dfufntyx0Q6B6Po9Ln7TjM7\nA3gdoSr/HcD748ejYtpFRKqZ4sTgKU7IsKlPhlS7vYRq7iFx9z3AU2b2dgALzsjdzsxOdPdV7v55\n4CEg2x73bDObHdvYvhO4D3gAeLWZzYn7jontZYeaj7XAnJy0LHP3TxOeXM0Abgf+ysya4zYnmdkY\nQtX8+8xsdFw/0d13AzsTbXrfA9xDYUuAd8djnEaoCsfMJgMpd/858I/AmYl9TgJWD3BcEZFyU5xQ\nnJAqpEKGVDV330F4YrTazL44xMP8BfABM1sBrAHenGebj8VzrAQ6gdvi+oeAbxFu8E8Bv3T35wnt\nfH8ct19KT7Dpz03ARfk69BFu3C+znnr6L8bOc6sJ7WhXAP8FPAb8Lq7/DtDk7r8BbgQeNrPlwCfj\nMS6Nx1kJzCe0ty3kP4CxZrY2bvtIXH8c0BGP/T/AlQAxiM0htPkVEakYxQnFCalO5p5byyciEMYs\nJ3TCe+MInOvrwE3ufke5z1UKZnYRcKa7/1Ol0yIiUimKE/1TnBDVZIhUh38DRlc6EYPQBHy50okQ\nEWkgihNSU1STISIiIiIiJaWaDBERERERKSkVMkREREREpKRUyBARERERkZJSIUNEREREREpKhQwR\nERERESkpFTJERERERKSk/j862uNN+dbqnQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxkAAAFNCAYAAABsY6I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9eXgcxZn4/3l1WrJ82xiDb8CAIYTb\nOFwOm3DkgIRksyQcIRchQI7NkiXJd5clJFmyu9lfQjYXkANIAg6BhADhCJcAc9oY22AbGx+yJdny\nIUuWJeue+v3xdlut0Rw90hwazft5nnlmpqu6+q3u6nrrrXqrSpxzGIZhGIZhGIZhpIuiXAtgGIZh\nGIZhGMbIwowMwzAMwzAMwzDSihkZhmEYhmEYhmGkFTMyDMMwDMMwDMNIK2ZkGIZhGIZhGIaRVszI\nMAzDMAzDMAwjrZiRkQZEZJGI1OVajmyQi7yKyLdF5FfZvGYcOc4UkXUZSLdcRNaIyLQ0pulE5PB0\npZfK9UTklyLy75mQTUQuFZG/D1bOFK5zk4j8PkF4jYi8L9NyZAMROU5EXsq1HPnOEMt1RuqW4YCI\nXCkiS7J8zYR1UBblyEh9JSJTRORtEalIU3qzvfJbko70Ur2eiDwmIp/OhGzZaj+IyJ0i8r0E4VnV\nyZlERD4sIn8ME3fEGhleI6BdRFpFpMErAFW5lqvQEJFqEfn8UNJwzv2nc25IaaTDOHLOveCcO3Io\nacThKuB559z2DKSddZxzVzvnvjvUdGIpF+fcH5xz5w417XwjmdGTYlr9lJ1zbhXQLCIfTkf6w50o\n3eB/fpplGaKfQabqlrwjHQZ8OuqgdBhHGayvvgnc6Zxrz0DaWcc5d4Fz7q6hphNLz6ej/ZCPJDN6\nUkgnlh5+GDhGRI5Ldv6INTI8PuycqwKOB04AvpVjeYY9omStXGSr52SoZFjOq4HfJbh2cQavbRgA\nfwC+mGshssiHnXNVgc91uRYoX8l2HV7oOkNEyoFPAzE7HbKtw42C5V60gzQxzrkR+QFqgPcF/v83\n8LfA/w8CbwAtQC1wUyBsNuDQF3krsBv4f4HwCuBOoAlYA3wDqAuEHw1UA83AauDCQNidwM+Bx4BW\n4EXgYODHXnpvAyfEyZMAPwJ2enK/CRzrhZUDP/Tk3QH8EqjwwiYAjwC7vGs8AkwPpFsNfN+TpR04\nHJgI/BbY5p3zoBd3EVAH/Isnx3bgM3Hk/T7QC3R4ef2pd9wB1wLvAJu9Y7d6z6EFeB04M5DOTcDv\nA/9PA17y7u9KYFEgbIDcwGgvXxFPjlbgEO+e/diLu837XR6VzxuABtQIWBT1nA8BHvDu62bgK4Gw\nU4FlXn52AP9fnHs005OtJKqM/AJ4FGgD3pfo+XrnfMN7FtuAz3r3+PAU3pcFXj6LA8c+CqwK5Odl\n755vB34KlAXiHrieJ//3wshG4vdwqxfXf2YLgSuBJYE47wGWAnu97/dElevvouV6H/B3YHLI+3ET\ncD/wR+/c5cC7Y9UvMfIbupyElOV8oAvo9u7DSu/4OODX3r2tB77nPz/0HX7Ouy+7gT96x5/37mmb\nl9Y/eccPRctheabq5OHyIUo3BI6Xe+X72MCxKd59Ocj7/wVgA7AHeAg4JM47UA18PhB2oNzGegYx\nykwyHfIz4G9e2XwVOCxOXkehjdFGL62lwNQQ5ecw4BnvvN2oETo+6h7eAKwCOoESYAbwZ6+cN9JX\n318JLEHrrybvHbggjry/Q+vpdu/e/Ct9+vhzaJ3wvBf3T2idtde7p8dE3aPgO/khYIV3D14CjguE\nDZDbu/8dqP5qBZoD9+xuL+4W4N+AokA+X0R1dKN3Pw88dy/OUcCTaPlZB3wiEPYBtD2xz3se18e5\nR2cBG6KOVTNQhyd6vsXe89gNbEL1sSOgh0K8R/8ELIs69s/AQ97vMG2skuj3JZlswGeAtd592gR8\n0TseT8/fRP/2w4XoO9XsXffoqHJ9PVqu96L1/6iQ9+NOVC8/6cn2HDAr1fohWTkJKctVqL7o8u7D\nw97xlNssxNDD3vHT8dpvCWVJRfB8+tC/ETAdbZDfGghfBLwLHc05zrupH4l6Ae5ADYp3oxXp0V74\nD4AX0AbtDOAtPAUBlKJK6NtAGXCOV+CODBTE3cBJqAJ4xnvYV6Av1/eAZ+Pk6Ty0AT4eNTiOBqZ5\nYT9Cld5EYAzwMHCLFzYJ+BhQ6YX9Cc9oCBT4rcAxqLIoRRXYH1EDpRQ4O3DfeoCbveMfAPYDE+LI\nXE3gZQq8bE96svqG0GWenCWoAdOA93ITqCTQxlCjd90i4P3e/yleeCK566LkuBl4BTgIbUy8BHw3\nKp//hTY+KoJpeNd+HbjRe85z0QrvPC/8ZeBy73cVcFqc+/NBYHXUsTvRCu507zqjkjzf89Hyeyxa\n0d5D/wrtm2iFGvMTuO5G4P2B/38Cvun9Pgk17krQ92Mt8LWoZzrAyAgh2yKSv4dBA+xK+hprE9FG\ny+WeXJ/0/k8KlL2NwDzv+VUDPwhZf9yEVtIfR8vR9eh7WhqjfjmQ3+iyRvJy8qlEzwaYGf0OBK7z\nF+A2774eBLxGn8K9F/h/9JWfM2I9q6j0Wgg0vkbqhzhGhhf2G+D7gf/XAo97v89B6+4T0Trh//Aa\nvDHegWoSNyL6PYOoMhNGhzSijYIS1ABYHCc/X0TrikpUv5wEjA1Rfg5H69ZytG58Hvhx1D1cgeq/\nCi/tlWg9NTpY5ry8d6MGWjHwJbTDQcI8H/rqgbu9tH2d8Vm0LvQ7i1YEzrmTvjroBLRDbIF3/U97\n1ygPIfeSKNnuBv7qXXc2sB74XCB+D/Bl77lU0L++Go02tj/jhZ+Alqf5Xvh2vM41VH+dGOf+XEug\nwzRQ3qJ1eKLnezXaoTkDrUefpX9D/ufEr5P8jqdKtFweEZBjKXBJoEyHqtvpb2Qkk+2DqBEswNlo\n++PE6PcoINNN9LUf5qHG/fu9e/Sv6LtWFih7r6GN8Ymonrs6ZL1yp3c/zkLL1q3EeedJ3AmRrJyE\n1ed30l8vDarNEv2sAulN9I6PTXhfMlmZ5/LjFZZW76E74GkCPTEx4v8Y+FHUTQ329r9G38uzCTg/\nEHYVfQriTLSBXBQIvxfPivce/B2BsC8DawP/3xUsKFEynoNWaqdFpS/ei3NY4NhC4liZqPtYU+B/\nNXBz4P80tDdggOGAvsTRPe87id+I7vcyub6X7Zwkz68Jr+eY/pXEDcDvouI+gSqOZHJHVz4bgQ8E\n/p8H1ATidxHoxaB/Q2ABsDUqvW8Bv/V+Pw98hyQ958ClwCtRx+4E7g77fNGG0Q8CYfNIcSTDO+97\nwG+832O8a86KE/drwF+inmksIyMl2Yj9HsYzMi4HXos6/2XgykDZ+7dA2DV4DcYQ9+Km4HNBK+hg\nI6CGcEZGwnKSwrO5if69cVPRjo/gaNYn8Too0MbQ7QTqsFjPKup4PXBWKnLl44c+3RBUzl/wwt4H\nbAzEfRG4wvv9a+C/A2FVaON5dox3oJrBGxlhdMivAmEfAN6Ok9fPEtVzH6b8xEjnI8AbUffws4H/\nC9He0QE94V7eNwT+V3r5PzjB84llZMxN8EzHe3HGBe6RXwf9Aq/zKBB/HdpATSZ38JkVozphfuDY\nF4HqQPzod/1AGmjP/wtR4bcB/+H93uqll7jRpp0Hi6OOVdNfhyerH54h0HgGziXFkQzvvN8DN3q/\nj0DbW5Vx4sat2+lvZKQkG+qt8NXo9ygQfhN97Yd/B+4LhBWh9d6iQNm7LBD+38AvQ96LO4PPBa0f\neoEZ3v9Q9UOycpLCs7mT/nppUG2W6GcVOF7qHZ+ZSI6R7rf3EefcGLTgHQVM9gNEZIGIPCsiu0Rk\nL2o9T446vyHwez9aaECt3NpA2JbA70OAWudcJCr80MD/HYHf7TH+x5yg7px7Bh3K/RmwU0RuF5Gx\naE9TJfC6iDSLSDPwuHccEakUkdtEZIuItKCFaXyUr38wPzOAPc65plhyAI3OuZ7A/+C9CUvweojI\n9SKyVkT2evKPY+DzAJgF/KOfTy/uGaiBkUzuaA6h/7Pb4h3z2eWc64hz7izgkCg5vo1W7qBD+/OA\nt0VkqYh8KE46TWiDPprg/Un4fElcHlPhHuBiz+f3YmC5c24LgIjME5FHvEUUWoD/JPbziSahbCHf\nw0RpR+c1+l2L9w6H4YDc3vtcR//yEYZk5WSwzEIr+e2BdG9DeyxBe+gEeE1EVovIZ0OkOQZtcBcC\nH3HOjQ987vCOPwtUeuVyNtoh8xcvrF95c861oiMKwfKWDsLokLDl+ndoJ8xiEdkmIv8tIqUkKT8i\nMlVEFotIvfe+/56B72W0ztgSpReCHJDXObff+zlonSEixSLyAxHZ6MlX4wXF0xn/EvUOzkDvczK5\ng0xG71m0zgg+l356LYYcC6LkuBR1lwb1NvgAsEVEnhORhXHSCaMzktUP6dQZn/R+fwr1kNgPQ6rb\nk+mMC0TkFRHZ4+XrAyHT9dMOvsMR71qZ0BmtqLvTYHRGonIyWNLVZvHxy2BCnTHSjQwAnHPPoVbd\nDwOH70HdT2Y458ahvnQSMsntaOXkMzPwexswI2ri1UzUWh4yzrmfOOdOAuajBeIb6FBaO+qT6ivN\ncU4nvYO6Hx0JLHDOjUWH86B/fl3gdy0wUUTGp0PkZMdF5Ey0UfQJdBRiPOouFOt51KIjGcEGwmjn\n3A+SyB1Ljm3oi+cz0zuWTHZfjs1Rcoxxzn0AwDn3jnPuk2il/l/A/SIyOkY6q4A5MSYJBq+d7Pkm\nKo/+En6t8T4HLujcGrQCvgBVGPcEkvkFOoR9hFeGvk249yWhbCR+DxPdfxj4/Pz00/KuEZDbe5+n\n0798+LShRqBPUBkkLCeiS1zGfTYi4t+v6HtRi/ZUTg6kO9Y5dwyAc67BOfcF59whaO/ozyXB8oki\ncig6hD4il1ENi3OuF7gPbTh9EnjEObfPC+5X3rz3eRKxy1uiMpGMtOkQ51y3c+47zrn56PylD6Gu\nuQnLD9qJ4IB3ee/7ZQx836N1xsw0TXZOqjPQ+ukidORpHNrbSgwZfdm+H/UOVjrn7k0id7Qcu9GR\nq2idEXwuyXTGc1FyVDnnvgTgnFvqnLsI1RkPouUwFqtQ3Z9I3mTPN5nO+GWCOml1IOqTwBQROR59\nX4I6Y7BtrLiyeR1gD6BtualeW+FRBqkzRES8a2VCZ1ShLkWD0Rlxy0lYfU5snTGYNku8e3o06vnR\nkuiGFISR4fFj4P0i8m7v/xi017tDRE5FK62w3Ad8S0QmiMh01OXJ51XU+v1XESkVkUXAh4HFQ82A\niJzi9Q6UooW0A4h41vgdwI9ExO+JOlREzvNOHYM2UptFZCLwH4mu43Qp1cfQhskELx9nJTonATtQ\n379EjEF9WXcBJSJyIzA2TtzfAx8WkfO83qxRosvWTU8i9w5gkoiMC6R1L/BvomuOT0Z9FcMuE/oa\nsE9EbhCRCk+WY0XkFAARuUxEpnjPxrf0I9GJOOfqUJ/QU+NdKMTzvQ+4UkTmi0glUc/X6RJ+VfE+\nUZe7B/gqaoj+KXB8DOqz3yoiR6F+1WFIKBuJ38Nd6D2LV34eBeaJyKdEpERE/gk1vh8JI5joUplX\nJohykohc7DVAvoYq7VdixFsBfEBEJorIwV5cn4TlxOkSl3GfjXNuq5fODmC23/D0yvrfgf8VkbEi\nUiQih4nI2V7e/tGrm0B7Ph195S/WO3k28IxzrjPJbSsE7kFdFi6lf6PpXuAzInK819j5T+BV51xN\njDRWoKOClZ5x97mo8ET1Ytp0iIi8V0TeJTpq3YI2kiPJyg/6XrYCez0D9BtJLvUa2jj8gYiM9url\n01OV1yOszuhER5Iq0WcRjzuAqz3dKZ58HxSRMUnk3gFMF5Ey6GeAfl9ExojILODrhNcZj6D11eXe\ncy31dPrRIlIm2uEwzjnXjT6rAfrC4zXUEyHuCFqI53sf8BURmS4iE1A//+D5Vyeok44JxOtG9cT/\noA3qJwPJDLaNlUi2MnS+wy6gR0QuQN2pfGLp+ei0Pygi/+C1o/4FLUeh9gkSXcp1UYIoHxCRM7wy\n813U5TbW6Fai+iFuOYGU9Hn0ezTYNks8PXw22t5KSMEYGc65Xaif8o3eoWuAm0Vkn3csXq9BLL6D\n9vhuRl/kA8uPOue6UIVwAdrz8XPUp/ftoeYBbXjfgTYatqAV7P94YTegjdVXRIePn0JHL0ANrApP\nnldQV5tkXI4qpLfRORdfSxw9LrcCHxeRJhH5SZw4T3gyrUfz1UGcYWfvhb0I7Unf5cX7Bn1lOabc\n3v2/F9gkOlR4CDoHYRnaM/QmuoJQqHWlPYXzIdSdYjN6b3+F9qqBTnheLdqzcCs6nyfemua3eXIn\nIu7zdc49hj7jZ7w4z4TJQxzupa/BuTtw/HpUSexDy2CojXhCyBb3PXQ67P594EXvmZ0WlXYj+gz+\nBX0X/hX4UJTcMfGUwCRiGw0+f0Ubm/7k8os9pRrN79DJozVofXDg3oQoJ2HxDb5GEVnu/b4CVbpr\nPBnvR90GAU4BXvXK30Ooz/ImL+wm4C7vnn7CO3Yp2tNYKDws/XsAfZconHOvop04hxBQos65p1Cf\n7gfQhulhwCVx0v8R6r+/A7gLnZwd5CYGPgP/OunUIQej5aIFncT6HH36KlH5+Q46wX0vupjGnxNd\nxCvnH0YnjG9FXQv/aRDyAtyCdv40i8j1ceLcjeqKek/+uO+xc24ZOun8p2g+N6A+8MnkfgZdhahB\nRPw65cto2diErph1DzrvLCneiNi5aJnZhrrl+AuLgNYxNV79fjX6TsZKpwv1zLgsySUTPd87UL27\nEtV7CZ9vEu5BR5T+5Pq7nQ22jRVXNu8efsVLqwnVSQ8FwmPpeQLh69D79n/ou/VhdDnrrmRCicgM\nVP+9mSDaPWhH2h50kYV4zyhu/RCinITl18B87z48ONg2SwI9/Em07ZIQcS7Z6JJh5BYRuRmdwBrG\nrzzv8HpF3wD+wY2QDfmGOyJyBnCtNzxc0IhuqHSbcy6eD7hh5BUicjc62fzmXMuSCURkCrrC5QkJ\nOq+MNCIil6EuywW/35roxq2XO+c+kTSuGRnGcEZEBO3FXenSsIu0YRiGMXIRdW98Ed2nI+4mp4Zh\nZJ6MukuJyPkisk5ENojIN2OEzxKRp0VklYhUS58PMSIyU0T+Lrri0BrRlT4QkTki8qqX5h99f0lj\nxLIcnXB7R7KIhmHkH6YnjDTTgPqUP5BrQQyj0MnYSIboRLP16KYndegmLZ90uoKNH+dP6Oodd4nI\nOejO0Zd7YdXoihBPis7Sjzjn9ovIfcCfnXOLReSXaA/3LzKSCcMwDCNjmJ4wDMMYuWRyJONU1Cdy\nkzepZjE6YTfIfPomgj7rh4vIfHTjjydB1xv2FIegG9Ld751zF7pJkGEYhpF/mJ4wDMMYoWTSyDiU\n/isE1TFw06KV6KZfAB8FxojIJHQN6GYR+bOIvCEi/+P1eE1Cd8PuSZCmYRiGkR+YnjAMwxihpGPj\nnKFwPfBT0bXqn0eXo+tF5ToTOAFdVu6P6JJzfw2bsIhcBVwFUFFRcdKMGTOSnBGbSCRCUVFhrPRb\nSHkFy+9IppDyCkPL7/r163c756Ykj5kzTE8MIwopr2D5HckUUl4hN3oik0ZGPf13bZxO1K6Kzrlt\neD1Unj/tx5xzzSJSB6zw13UXkQeB09D1qMeLSInXSzUgzUDatwO3A5x88slu2bJlg8pEdXU1ixYt\nGtS5+UYh5RUsvyOZQsorDC2/IrIlvdKkhOmJPKOQ8gqW35FMIeUVcqMnMmnCLQWO8Fb5KEM3Fnko\nGEFEJou3gy3wLfo2tVmKKgnfajoHWON0lvqzwMe9458mhV4rwzAMY1hhesIwDGOEkjEjw+tBug7d\nuXEtcJ9zbrWI3CwiF3rRFgHrRGQ9MBXdVdDfhfN64GkReRMQ+pYwvQH4uohsQH1vf52pPBiGYRiZ\nw/SEYRjGyCWjczKcc48Cj0YduzHw+376VgCJPvdJ4LgYxzehK5IYhmEYeY7pCcMwjJFJ4cx4MQzD\nMAzDMAwjK5iRYRiGYRiGYRhGWjEjwzAMwzAMwzCMtGJGhmEYhmEYhmEYacWMDMMwDMMwDMMw0ooZ\nGYZhGIZhGIZhpBUzMgzDMAzDMAzDSCtmZBiGYRiGYRiGkVbMyDAMwzAMwzAMI62YkWEYhmEYhmEY\nRloxI8MwDMMwDMMwjLRiRoZhGIZhGIZhGGnFjAzDMAzDMAzDMNKKGRmGYRiGYRiGYaQVMzIMwzAM\nwzAMw0grZmQYhmEYhmEYhpFWzMgwDMMwDMMwDCOtmJFhGIZhGIZhGEZaMSPDMAzDMAzDMIy0YkaG\nYRiGYRiGYRhpxYwMwzAMwzAMwzDSihkZhmEYhmEYhmGkFTMyDMMwDMMwDMNIK2ZkGIZhGIZhGIaR\nVszIMAzDMAzDMAwjrWTUyBCR80VknYhsEJFvxgifJSJPi8gqEakWkemBsF4RWeF9Hgocv1NENgfC\njs9kHgzDMIzMYXrCMAxjZFKSqYRFpBj4GfB+oA5YKiIPOefWBKL9ELjbOXeXiJwD3AJc7oW1O+fi\nKYZvOOfuz5TshmEYRuYxPWEYhjFyyeRIxqnABufcJudcF7AYuCgqznzgGe/3szHCDcMwjJGL6QnD\nMIwRSiaNjEOB2sD/Ou9YkJXAxd7vjwJjRGSS93+UiCwTkVdE5CNR533fGzr/kYiUp11ywzAMIxuY\nnjAMwxihiHMuMwmLfBw43zn3ee//5cAC59x1gTiHAD8F5gDPAx8DjnXONYvIoc65ehGZi/Zi/YNz\nbqOITAMagDLgdmCjc+7mGNe/CrgKYOrUqSctXrx4UPlobW2lqqpqUOfmG4WUV7D8jmQKKa8wtPy+\n973vfd05d3KaRQqF6Yn8o5DyCpbfkUwh5RVypCeccxn5AAuBJwL/vwV8K0H8KqAuTtidwMdjHF8E\nPJJMlpNOOskNlmeffXbQ5+YbhZRX5yy/I5lCyqtzQ8svsMxlSA8k+5ieyD8KKa/OWX5HMoWUV+dy\noycy6S61FDhCROaISBlwCfBQMIKITBYRX4ZvAb/xjk/wh7dFZDJwOrDG+z/N+xbgI8BbGcyDYRiG\nkTlMTxiGYYxQMra6lHOuR0SuA54AioHfOOdWi8jNqEX0ENrDdIuIOHQY/Frv9KOB20Qkgs4b+YHr\nW23kDyIyBRBgBXB1pvJgGIZhZA7TE4ZhGCOXjBkZAM65R4FHo47dGPh9PzBgiUHn3EvAu+KkeU6a\nxTQMwzByhOkJwzCMkYnt+G0YhmEYhmEYRloxI8MwDMMwDMMwjLRiRoZhGIZhGIZhGGnFjAzDMAzD\nMAzDMNKKGRmGYRiGYRiGYaQVMzIMwzAMwzAMw0grZmQYhmEYhmEYhpFWzMgwDMMwDMMwDCOtmJFh\nGIZhGIZhGEZaMSPDMAzDMAzDMIy0YkaGYRiGYRiGYRhpxYwMwzAMwzAMwzDSihkZhmEYhmEYhmGk\nFTMyDMMwDMMwDMNIK2ZkGIZhGIZhGIaRVkpyLYBhGIZhGCkQicCuXeBc1i9dtmcPNDRk/bpZobUV\n9u/vd2j0xo0wcWKOBMo+hZTfvM5rWxu0t6d0yugNG2DRoszIEwczMgzDMAwjn1i6FB57LCeXPqSm\nBlatysm1M0okAkuW6HeAI5qbYfz4HAmVfQopv3mbV+dg69aUOxnmTp4MV12VIaFiY0aGYRiGYeQT\nfm/7JZdk/dI7X3uN2aeemvXrZpzOTtizB44+GubMOXB466pVjD/uuBwKll0KKb95m9fubrjvPpg7\nF6ZPD31afWMjkzIoVizMyDAMwzCMfCISgaIiOOqorF96f0NDTq6bcfbvh8mT4eSTYcGCA4f3VFZm\n3cUklxRSfvM2r+3t8MYbcP75cNppoU/bU12dOZniYBO/DcMwDCOf8I0MI334blJ2X43hTh6VVRvJ\nMAzDMIx8wrm8aGDkFb5/ezrua3MzrF8/9HRywJi1a6GyMtdiZIW8zWtbG9TXw9q1KZ1WWVOTGXkS\nYEaGYRiGYeQTNpKRftLZO/z887B8+dDTyQGTampgx45ci5EV8javHR3wzjtaVjdvDn3a2La2DAoV\nGzMyDMMwDCOfMCMj/fhGhsjQ0+ru1lWLsrySTzrY+vzzzD7rrFyLkRXyNq979kBxMVx4IbzrXaFP\n27lkCdmeTWVGhmEYhmHkE2ZkpJ90jmREIlBSkpeuOJFRo/JS7sGQt3lta4PSUhg9OiX5I2VlGRQq\nNlZLGYZhGEY+EYmkp8fd6CPdRoYZgUamsInfioicD9wKFAO/cs79ICp8FvAbYAqwB7jMOVfnhfUC\nb3pRtzrnLvSOzwEWA5OA14HLnXNdmcyHYRiGkRlMTwwCa8SmHzMy8ofnn0/LXIopq1fDrl1pECjL\n7NkDq1fDk0/qd0jG19aOnB2/RaQY+BnwfqAOWCoiDznn1gSi/RC42zl3l4icA9wCXO6FtTvnjo+R\n9H8BP3LOLRaRXwKfA36RqXwYhmEYmcH0xCCxRmz6SefqUvZ8Msuzz0JFxZBdncqamvJz4ndTk7pM\nNTbq3IyQlOzbl0Gh4lwzg2mfCmxwzm0CEJHFwEVAUHnMB77u/X4WeDBRgiIiwDnAp7xDdwE3MZKU\nh2EYRuFgemIwWCM2/aR7JCOFxp+RApGIGoQLFsDZZw8pqfrqao7Ix834tmyB3l644grd9Tsku0fY\nZnyHArWB/3XesSArgYu93x8FxoiIv+v5KBFZJiKviMhHvGOTgGbnXE+CNA3DMIz8wPTEYDAjI/2k\n08jo7bXnkyl6e/W7kI04m5MRmuuBn4rIlcDzQD3glSBmOefqRWQu8IyIvAnsDZuwiFwFXAUwdepU\nqgdpwbW2tg763HyjkPIKlt+RTCHlFUZ8fk1PRDHlrbco3bePbTl45iO1rJXv2MG0mhoaXn2Vjrq6\nA8cHk9+D16zBFRWxIw/v03B/vtLVxayaGvasXElLT0/yExIw3PMaj4r6eqbW1LD9tdfoTGGDvVzk\nN5NGRj0wI/B/unfsAM65bXg9VCJSBXzMOdfshdV735tEpBo4AXgAGC8iJV4v1YA0A2nfDtwOcPLJ\nJ7tFgxwSq66uZrDn5huFlKZhXiAAACAASURBVFew/I5kCimvkNf5NT0xGLZvh5YW5qXrmpEINDT0\n9ZAm4OWXX2bh8bGmweQ55eUwcSKz58yBmTMPHB5UfidPhvJyjj788DQLmXlC5zcSgZ07++ayZIvi\nYigtZXZlpS7hOgRef/ttTjrppDQJlkWqqvrK6rRpoU9b8vrrnDFSJn4DS4EjvFU+6oFL6PORBUBE\nJgN7nHMR4FvoCiKIyARgv3Ou04tzOvDfzjknIs8CH0dXDvk08NcM5sEwDMPIHKYnBkO63aWWL4dH\nHgkVdVpNTUor2uQNTU2wcqXe2/HjDxweVH5ff133MWhqSq+MWSB0fuvrddfpbNPTA3V1WmbHjBlS\nUoc1N/d71nlHinuxTIxE4KKLMijQQDJmZDjnekTkOuAJdGnC3zjnVovIzcAy59xDwCLgFhFx6DD4\ntd7pRwO3iUgEnTfyg8BqIzcAi0Xke8AbwK8zlQfDMAwjc5ieGCTp3idj/379/uQnkxovO159ldkL\nFiRPs6cH/vpXXQUnH+jt7ZtU7Pv9gx4L/g+bVmlp6ucNB8Lmt6ND79Wxx2ZepiCdnfqZMwemTBlS\nUq319Yw/NIvTtfx7lg6Ki/Uda2kJf0oOymNG52Q45x4FHo06dmPg9/3A/THOewmIuVe6twrJqemV\n1DAMw8gFpicGQbpHMnzf9nnzkhov7fX1cMQRydNsbtZG1axZMGFCGoTMMNu3q/vPMcfApEkHDreW\nlKTekG5o0F72PHQrSym/vb1wzjmZFSiaffu0YX3aaVq2hkDzW28xPVtGUn09LFmS3jT3hp5+BkDZ\nEN3LBkOuJ34bxsigtRXuuw+6hu9+X4esXw9vv51rMbJCIeUVYMr27VnfZMnIAM5pAyrZ3Ih9+9QY\nSJc7TnMzdHfrdxJK9u0Ld92mJmhvhyOPzH5v92B45x2orYUzz4SDDz5wuLmsDM44I7W0Nm6Egw7K\nfgM8DYTOb0+PuutkO4+NjVBTA+edpwbhENg9aVL26s3nn9dN9D7+8ZytCtXw1lvMyfI1zcgwjHSw\ncyds3aoTBoe4QVCm6Kmqym//0xQopLwC9KbYo2VkgVWrtPMhFdasgZdfTh5v3TptqCxfPjjZQGXz\nXZl27lTjZuXKpKcd1djYr6c/Ll1d2hh85ZUh+85nhX37dDRj+XKdBO4RKr89PXq+7wqzbRuMGgW3\n355BgTPDsS0tMHZs8oh79uhI1RNPZF6oWNTVwcSJQ0piztat8OijySOmg4YGfd9SmKidbqp27876\nNc3IMIx04Ps6nnsuTJ+eW1nisLO6mvkF0ttdSHkF2JOHyzCOaPbuhT//OfXzNm7UxtORRyaOV1x8\nYJWdQVNfr41E6HNtamhIelr5vn066pGM7m41ZHbvHl7zMvx5F9F0dKi8O3f2u6+h8rt3b/88trbq\n80nBX364UNHZqQZEMtrb9V7mavS+vn7I85KmdnSoMZgtKit1JCZHTKqqyvo1zcgwjHTguzcU8gZB\nhmEofsProotg/vzYcWpqBjY4Xn5Zl+W84gpNY/Pm2K5T+/dr4+iUU8LLtHdvfzenqVPh0EPV5WTD\nBm0kf+ITSZPZ8MYbnHDCCcmv19gIDz+s7jSBJWFzSns73H9/4onNF1+sPfnbtkFLC9vWr+fIefMS\np7tqlRpo732v/l+xQvO8cGH6ZM8Sa1eu5Ph3vzt5xBUrdDTt05/OvFAZYumSJZyZqivcUCgrS++C\nDSmy4aWXOCTL1zQjwzDSga+04vlarl8Pr76aPXliMHXtWvU5LgAKKa8Ak2prbU7GcMLv+a6o6Od6\n04+//KVvJMFn/XrYtQv+/ndt5K5fH/vcbdvUHz5eeCy2b9dVeYLU1GgDGWDcOAgxIjahpibchNOW\nFk1/6VLYtCm8nJlk3z4dLTrkkNh7LJSW6vKzoD70zjG1uTm5W9ru3fosgyMAvb3Z30MiDYyvqQk/\n8jR//pBXeMolvRMm5LX8qRLJ5qiNhxkZxuBwTv2Co5VWHjF6w4b0rXryzjvak7V2bWyXg2eeUeU2\neXJ6rjcIRtXXa09KAVBIeQUYFca9wcge/mpNidyZurp0hZxgT+rDD8OWLXDddfDaa/DUU3DVVQNd\nOn77W50ncOGF/Y87p/VMrHq5ulp71/2JuiL9549VVIQaia194QVmn3lm0njU1sLvfgeXXAJz5yaP\nnw02bVKj7/LLYcaM+PG6u/Vz+ums7uzk9Pe8J3G6jzyi9f7nP993bPTonPZaD5bQzxeG7fxDY/hg\nRoYxOLZvh8WLcy3FkJhSU6P+z+mgoUFXM3rsMVXW0axerb1DOTQyJA8V3mAppLwCuALL77DHNzJK\n4qjYSEQ/lZW6e69PaWnfsfJyNZQPOWSgsVJVpR0kU6f2P75jBzz5ZOxrFhXpXI8hNvh7R40Kt9Py\nqFEqd1XVkHdmThsiek8nT+5/36Pp6NB4kybR3dHRb7WpmIwdq4Zdsnh5QG9FReJ7YxgpYEaGMTj8\nYf6Pf1z9evOQuiVLmJ0uf8yVK9XAuOaa2CtzPPCAug985jPpud4gSGt+hzmFlFeAHS++SBKvcSNb\nRCJw9936O95oWjwjpLe371hwLsatt/ZfXvbVV3XFpuidmRsb4c03dZ5FdENRBJ5+WkdVh8Dsmhp4\n7rnkEf0dtPfuHX4rvSXrgffdX8POsevttfl4hhEDMzKMweEryQkT8mOjpRj0jBmTPtlHj9YRjEmT\nYvcClZer8ZHDe5XW/A5zCimvAL3W8zh88OvG8eMHjjREx4k2Mvy9B6Cvobtpk04IP/jgviU7Dz1U\nNyKLdmtZv17nHVxwQcZ6o5tXrAi3yVxdnRoYp58+vPzex41LPrJiRoZhpAUzMozB4U9sHMoSiiMJ\nv9cx3sTvYOPBMIyRiz/Z99RTE9cHkNjIiER09OH113VZ1eDO2WPGqMtq9A7CkQjMng3nn5+x+qYZ\nwi0ysG6drlp1+unq8pVPmJFhGGnBWj3G4Ejmc1xoJFNKvb3xV5kxDGPk4BsZiebJJDIy/I6bSESN\nlLY2/T1rVt9SsG1t6n4Zyy1q8uThUS8n63gZzpiRYRhpYRjURMaQcE6XM/SV1hAob2jQlU3CsHWr\n+ghv367D83lISvlNxrZtej/q6mIr+B07tPcxXdcbBGnN7zCnkPIKUJaDnVyNOPhGRrzGdV2d7jGw\ndasuHxusP9etU7fLF1/UsLo6XRZ11y5dRnX79r64FRVw7LGx530Mpuw3NencsSS6ZM6WLeF2ee7t\n1RW0tm3Lv1UI/dXaUjEyCmg1O8MIixkZ+c7GjfD736clqWk1NbpCUhjq6nQo/J578tZlKqX8JqOm\nRj933x27B/O119QPOIdLjaY1v8OcQsorwOSmJl2Ewcg9iUYynIOvflUb3tu3w1tv9Z+EXF+v9elz\nz+kk7rY27bRobtb/wWVXu7vhD3+ILcO2bbphXyo0Nur1J05MOAoz1u9cCkNxMfzv/+blUq4AvPoq\nE3fuHLifSTTNzbYik2HEwIyMJExYuhR+/vNwmw+BDmHX1ibeURRUQXR1qdLp7u6/aY9zyc+PJl6v\nWazdYoMErjvTudSVwQsvpBY/nQxxo6OM7EEb7SPt49/bhx7KxFVDMaOAhvQLKa8Ac4qLdQUiI/v0\n9FBRWwuvvKJ6oqNDO2Beekm/ly3TToaGBq0Htm/XuqC4uK+Hv6NDw5zT483NaiR0dambZUmJduyE\n2SQtEumbM5fKO9Dbq5PVTz45oR7YV1vLhER7TIwUioth2zaqNm8Op4/zdJVFw8gkZmQkoaK+XpcJ\nrKwM51NfXKwN/ilTBm6gFKSxEdrb9dPT03ce9K2hHhaR5MZBvHD/XBGc7wOcCsOhITdIGXp7eylK\np/xFRYl9oUtLc+or3d3ZSXGBzAsppLwCdBUVkZ/jiSOAJ55g3o9/rEZBe7vW3S0t8OijffV4T48a\nEP4eOsXFOrI5dqwaGN3dqi8iEf3f1aV1RXm57msxYQLMmxd7D55YlJTAccelPso8cyaceGLCKJuq\nq5lZQLvLb62uZm4B5dcw0okZGWEoKYFzz4Urrkget7tbXYg++EFdVSMef/mL+s02NcGaNXDRRXDK\nKRpWU6NDzEceCR/4wNBkv/9+HWJfsCB2eFmZ9sCIsOzVV1kQL95wpLgY5swZtJHxYnU1iwpIebxS\nQPktpLwCLK2uZlGuhShU2tt1M8Tjj9clrOfN0w3xfCP3+ON1TlZLC3zoQ32jmeefr6MGr7yiox3X\nXaduTg88oPX15Mlp2TzPMAwjV5iRkQx/CHv0aK3wk+HvFJqs4eu7+kQimvbs2X3pi6h/54wZut75\nUPA3ZgqRTvv27eHyaBiGYSjO4YqLYfp0eNe7tMNozx6tw8vK4Ctfgb/9TUfEzzlHv5uadO7DkUfq\nPIgtW/R3ebkaF2eeqTrBMAwjj8nDteVyRFg3olSWvgtOEAy6M4VZAjEsg5lnYRiGYaSOSF/9Hax7\nIxHVCcF5ZH5YdLxgmGEYRh5jRkYSJNXJxWGNDH+ExFcwQSMmOAFwqJiRYRiGkTmidUQsQ8Kf7xbW\nyMjHvSUMwzCisJosLGEb6qmOZCQyMtJlHJiRYRiGkXmCIxn+f1C9UFTUf0GPWEZGsj02DMMw8gir\nyZKRaqU/mJGMoqKBRkYq10x2HTMyDMMwMkO0UWEjGYZhGIAZGenH37Qn1ZGM6DkZvvExVIa4l4Rh\nGIaRAukwMqxjyDCMEYAZGckY7JyMsOfFcpeKRNJrZJjCMgzDyAypjGTE2v/IRjIMwxihWE0WhlQa\n/F1d+j12bPI0fWMi1pwMMCPDMAxjuJNOdymbk2EYxgjC9slIRix3pkR0d+t32J1WE038NiPDMAwj\nP2hv18301q+H3buhrU2Pvf027NtnczIMwyg4MmpkiMj5wK1AMfAr59wPosJnAb8BpgB7gMucc3WB\n8LHAGuBB59x13rFqYBrQ7kU71zm3M5P5SMllyjcymprg5Zfjn/vnP+susBMnwtSpmZ2TYUaGYRjD\nlBGjJ9avh4YG2L4d3npLO5pGjeozHI44IvnqUjYnwzCMEUTGjAwRKQZ+BrwfqAOWishDzrk1gWg/\nBO52zt0lIucAtwCXB8K/CzwfI/lLnXPLMiR6Pw7skxG20vfdpd55B1asgPHjB8ZxDtauhZ4eNTJm\nzFBDIxiern0ywBSWYRjDkhGhJ3wdEYloPX7ZZXqsslLdZi+7TMMnTlQDJFqn2EiGYRgjlEyOZJwK\nbHDObQIQkcXARWiPk8984Ove72eBB/0AETkJmAo8DpycQTnDEbbS90cyAMrK4GtfGxinqwtefBFm\nz4Yf/nBguO34bRhGYZD/esKvY53TOn/KFBgzRo2MCRNg2rT+cWHgyLUZGYZhjEAyaWQcCtQG/tcB\nC6LirAQuRofKPwqMEZFJQBPwv8BlwPtipP1bEekFHgC+51wG12kNJr1sGVRXJ47vj2RE730RpKdH\nv+ONVKTLXcpPxzAMY3iS/3oizMRvn6A7lE38NgxjhJPrid/XAz8VkSvR4e56oBe4BnjUOVcnA3vh\nL3XO1YvIGFR5XA7cHR1JRK4CrgKYOnUq1cmMgzgc1NVFa2sr2zZsoGvvXipra2mbOzf+CSJ0H3QQ\npatWUbllC7Uxrlvc1sZRu3axv7yczTHCx6xbx+zGRnauW8eOQcoNgHPMrqmhefx4mkOMZrS2tg76\nPuUjlt+RSyHlFUZ8foe1njho7Vom9fTQtGcPrXV11L30EtNqaugpL6dn924aAmlW1NczdfNmitvb\n2b1iBXudY9KqVVRs305ddTVj1qxhUk0NW5csIVJenrIs2WCEl7UBWH5HLoWUV8hNfjNpZNQDMwL/\np3vHDuCc24b2UCEiVcDHnHPNIrIQOFNErgGqgDIRaXXOfdM5V++du09E7kGH2wcoD+fc7cDtACef\nfLJbtGjRoDKxYfFiqkaPZt68eepvO2kSXHutrhbS1hb/xCeegM5ODjvqqIFhLS06pD5nDrNiyTV6\nNDz4IJOOOYajByk3oL1mzz0HJ5wAZ5+dNHp1dTWDvU/5iOV35FJIeYW8zm/+64m6OhqffpoJY8cy\nYcYMZpx2GqxZo+5SU6ZwVDDNd96BdeugtZUZJ54IZ54Jzc1QVcXhixZBeTns3Mnss8/WSePDkDwu\na4PC8jtyKaS8Qm7ym0kjYylwhIjMQZXGJcCnghFEZDKwxzkXAb6FriCCc+7SQJwrgZOdc98UkRJg\nvHNut4iUAh8CnspgHoLCqptTSYm6RN16a5/bUyzWroW9e+OHOxd/mdt0bcaXzrkdhmEY6Sf/9YTv\nAuXX2c5BR4euNNXYCM8+2xe3thY2b9bwN95QHbJqFezcqfFqPc8xc5cyDGMEkDEjwznXIyLXAU+g\nSxP+xjm3WkRuBpY55x4CFgG3iIhDh8GvTZJsOfCEpziKUcVxR6byAN7qUr7/rG9k7N6toxHvfjfE\nc50qK1PFcd55scNLSrTXqrFxYFhzc9/mTUPBjAzDMIYxI0VP9MM5XZ5882ZdXbCioi9s927YskUX\nCFmxAvbs0Q6plhYddQZdhaok157MhmEYQyejNZlz7lHg0ahjNwZ+3w/cnySNO4E7vd9twEnpljMp\nfmO9p0eVwU9+Aq+9piMV77wT+5zVq9Wd6oknYoe/+SZ0dsZ2uaqt1dGSsrL0yG1GhmEYw5S81xN+\nPRtcZaq9XUcrLroIPvOZvrhr18I992j4Rz8Kp58ODzygm/h9+cvs26eqwb2cNelT5s03x4bea3Yk\nYPkdfpSWqhf4cJfTyP3E7/xBRHufurtVicydC//wDxBrzgVo71VLC1x8cezwUaNg//7Y4StWqIFx\n1lnpk90wDMPIHL6R0dGhnUcicMopA+MER8eD5wHLl/f3rhqO1NRMjDkAP1Kx/A5Pxo+HefNyLYWR\nDDMykhEcDejp6fO5nTwZjj4a3vWu2Oe9+aYqmjlztPcqmq4uNVg6OgaGlZXpJPOxY9Mju5Fzmpt1\nQ+BcsnbtGCorcytDtiikvAJs2jSaApq/OHzp6oLbboOtW3Xi94wZ/cOT7Pjd26s/v/3tLMk7CJ57\nbgtnnz0712JkDcvv8GLHDvjVr/RdMYY/ZmQkI7iba3u7luzubjU24hkJoMf91Z2Wxdh0dtUqPT/e\nMoWjRw99x29zlxo2vPACvP56bmWoqZnEjh25lSFbFFJeAZqbx+VahMIl6C7V1qbzKSZOhJkzVU80\nN/fF3bdPO6vijGT4c8eHsxtISYkb1vIloqcHHnww/sKQFRXqxRbMXz7ndzAM9/z6slkfan5gRkYY\nenrUb7aoSBv+DQ2qFOrqdMwuFrW1fY6D06bB5Zf3D7/3XjVaPvvZ2OeXlQ1t4ndnJ7z1lv42IyPn\n9PTowNTVV+dOhuef38pZZ83OnQBZpJDyCvDCCw2A+Q7kBOe0Q2nrVp3YXVUFra3akr3wQv2O7nY9\n7jjYsEE7mZqa+hkZYarr9nYdGQ0OjGSLd96pYlye2rRNTfDkk6q2o1cI7unRx7dnD/3yt2bNFLZv\nz66cuWS453fvXnUUGT0aVq4cWlrDPa+J2LlTPe5Toa3toKyPeJuRkQRxTmufujo48URtKdbXqwHQ\n26the/dq7RTNQQf1uVk9+GD/sNdf16H16OPpYsOGPg1UVZWZaxgpUVxMTl14Ro2KFIwLUSHlFaC8\nPAetTUOpq6N81y4dpfC7WUtKVEcceijs2tV/EY+SEq0M1q7VehrgsMMArbLDGBmvvw5PZWfx9gHU\n1Eymvj55vOFIa6tuU3LMMf0X/QK97xs2aHiQ5uZDeeGF7MmYa4Z7fru6dJ2ErVvV0BgK2cxrT48a\nsOkagYnV5EzGpEmH8r3vpef6YTEjIxn+RD2Af/xHdXFatQqOPx6++EWdc/HAA7Bpk87TCDJqVN9o\nxL59/cPa27XURR9PF1OnwoQJcMEFMGZMZq5hhMaGdg1jhLJlC8Xt7dqt6Ps6jRmj/9va4NRTVXfM\nnBk/Da8jKOxIRne3fn/ta2mQP0WWLKnjjDNmZ//CaaChQW28iy+OPWm4o0OdAIK8/PJaFi5cmB0B\nhwHDPb9NTXDnnXD++TotdihkM69r1uhio5MnD313gt5eqK6GWbO0HyMsPT11QHaHIc3ISEZwXkNl\nZZ9/bXm5NuLHj9deqjlz4POfD59uZaXWZqmcY+QtYRsPhmHkH66oSPXAzJmwcCEcfrj65Zx/vu6n\nNH9+qL0vwtYTfrx43rqZpKqqJyfXTQetrdr356vuMGze3MmsWZmVazgx3PM7Zow+u0MOYchyZjOv\njY0q95e/zJDdDTs71dA491x4z3vCn1ddvWtoFx4EZmQkoV9977tI+bPzfHPU36QvFazVWVDY4zaM\nEUpwmHLcODUwjjhC/ZkOPhhOOy2lpFIxMqJpa4Of/zz2eiQi8MEP6jTBQsX3ILYN1fMXv9znYj7S\nUPCnZQ11PR/oq3LyoRybkZGE8oYG7f4oKYGXX9axuoYGWLJEjYsxY3SOxqRJ8Ne/hk94167cdEMZ\nOcGMDMMYoURvxudvyAcptwLC1hORSOykW1rU0Jg/X1VSkJde0smihUw6G3pGbgguypZPpLPs+QZW\nPrQpQhkZIvJn4NfAY865PLMfh4BzVGzfrg6wkYgOf+/bpy5TIrq8h79ExbhxsHFj+LRF1MXKKBjy\noUIwjMFSsHrCx3/Bg0ZGii/9UEcy/MbH8ccPnHOwbFn+9f6mGxvJyH/y1cjwy56NZMTm58BngJ+I\nyJ+A3zrn1iU5J//xlyYsL9eJeYcfriMaHR262/d3vqMrSBUgPT26BUj0JLl8YtWqiSkvATdYli/X\nRcgefTQ714tFNvObawoprwDvvDNuOGzGV5h6IpocGhmJLltUZEaGjWTkP/lqZPhlLx2GwYgbyXDO\nPQU8JSLjgE96v2uBO4DfO+e6Myhj7ohEKPZXCOnu1q6g8vK+TQ8KuKbavl03mCsry9/bsHnz6Ky9\npFu26GIzb76ZnevFIpv5zTWFlFeA3bsrkkfKMIWsJ4D+LfwcuUsl6qkXMSMjnQ09Izfku5FhIxlx\nEJFJwGXA5cAbwB+AM4BPA4syIVzOiUQo6u7WJ1paqqWjqkqdXRcu1CUqChS/kF9yCcydm1tZBkt1\ndS2LFh2WlWstXqzTeb70paxcLibZzG+uKaS8AlRXNwBH5VqMwtQT0QRb8zlyl4rV+LCRjPS6rBi5\nIZ+NjKKi9Iw+jLiRDBH5C3Ak8Dvgw845f4/EP4rIskwJl3P8PTKKinTXl6oqnVF38MFwzjn5YUZm\niEF6AxQsNvHbGOkUrJ4gahXC/ft13t4gXnozMjKLuUvlP37ZzkcjI13lLp/aX2FHMn7inHs2VoBz\n7uQ0yjO8iER0x29QxdHe3rdzaz483QyST4V8uGD3yhjhFKaecI4D7Z22Np2sVlmpLfrgTt/hkgpt\nZMQyJGxORmJs4nf+k88jGek2MvKhHIcVcb6IHFhvVUQmiMg1GZJp+BCskdvb9dtfZLzAW4xmZKRG\nvlWIhjEIClNPBF/unh79XrAATjxR3WpTTCrsnAwbyUgdG8nIf/J5n4x0lbsR5y4FfME59zP/j3Ou\nSUS+gK4mMnLZto3ijg5VHMXFun/73Lk6izcfnm4GMSMjNcxdyigAClNPBI0M70VfK0fT3ruPE8pH\nkcprH6+eWLtWPbCC/+vrdeumIFu2QG2trmZXW9s/rKZG54VFn5Mqq1ePpbx8aGnkiq1b9TsfeoCN\n2NhIRn6NZIQ1MopFRJzTrIlIMZDaOHA+8tRTFPlGBuBGV7E/UgFdpbA/vuooL099A/B8w4yM1DAj\nwygAClNP+KPcHj2U8MeXZkJ7O9MaYNq08EnFqie6u+G++/o3qt5+W42OJ57oH3fXLt2u6fnndQph\nkLVroaKirzd/sNTUTGTXrqGlkUsqK/u2tzLyj3w1MiIRG8lIxOPo5L3bvP9f9I6NbPzlAMrLobyc\nJbMu5enfT4ONp9PYVEZnnMp69Gi49NLESZeUwLHH5q8xYkZGapiRYRQAhaknoN8LHinqq9Sj7I9Q\nyUT3Tvb26vH3vQ9OOUWPPfgg1NXBddf1j7t2Ldx/P1x1FUyd2j/sjjtgzBhdEXAoPPfcFs4+e/bQ\nEskhJSXmLpXP5KuRYSMZibkBVRj+ApxPAr/KiETDieZmirq6tFQXFbG3axSjyiKcPXc9d3W+Bxej\nwOzZoxuBjx2bvFE5ahQclftVJweFGRmpY/fKGOEUpp7waOmppGb3IexnCluKHMXdwuLFfSMZRx+t\n0zR8IpG+KRw+7e26wWlrq/7v6YF9+/R4e7vOKw/G8//7+Fs6BeP6dHfrsaam2PKXloaro9rbiwak\nPRLxn8/u3SU0NCSP7692D3ofS0szK1+mCJtfCF9m0klPj5bv5mZtbw2FvXuLh5xGWPbt0zLiv9tD\noaUFurp0PaJU0uvszL5VEnYzvgjwC+9TODQ0IP4YV3k5PaUVjHK9nDRhG08Vw6Jz++aB+7z4oi4u\n8vWvx7daGxvht78d+rB1LjEjIzVsJMMY6RSsnvB8F/b3lNLV2Us3JTox2wmvvKJR2tp0hDtoZCxd\nOtAQ2LlTGyIPP6wNiJ07NfmWFrj7bg7MhWhrU/1x++39z/cbHr/73UAx9+/Xc264IXY2iovVlSgZ\nnZ2n5u2cjLA4p/fYOejpOS2px0Fv78CJyCUl+empECa/PqWlWq6ziXOwdy/cddfQ3d46Ok7Jqutc\neTn89a9DT6ezUzdEfuqpcO+sT1XV4Zx33tCvnwph98k4ArgFmA8ceCTOuTzdhi0kzc1Id7fWFCK4\nde9AmcMdAQ6homKg32tVla5aWFkZvyejo0O/8224L4gZGamRz8/aMMJQsHoCkN5eRvd2cGjXFiZU\ndPF0RQvTpkY41hvTefxxNR7e//6+c7ZtgylTYPr0vmPLlqkxcNZZsHkzrF4Ns2Zp59WYMTB+fN+5\nvb3qQhWsg3fuhHfe0KNInQAAIABJREFUiS1jV5c2TmLhGyCjRiVftaeoqIeKinBWRlGR7lmbj3qi\ntlbnsPT0dDB6dFXS+KWluk8v6NyYsWP7P9t8YefO3Rx00MEh4qlhetxxWRAqgHPw0kswcybMmDG0\ntGprdzJjxsz0CBaCiRPTs4dzU5PWCQsWaB0Slt27G4FDhi5ACoS1s38L/AfwI+C9wGcIv/xt/tLU\n1Nc6dA7X0YmUC73zjiZSUxJ3LXJIXFHnq09hEDMyUsNGMowCoDD1RHc3JW1tRFwxkaIi3OQp0F3G\n8WeUsOB0jbJ5s7p4nH5632nPPKMr3L7vfX3H7r1Xe2mvvhpeeUU7q666Cq65Rhusxxyj8V5+WUfE\n//3f+wwPgDfe0J7Sri69VtgVdB9/HF57TXtax49P7OqzceN2Djvs8KRpdnbqCMxnP5taQ2g40NkJ\nP/4xvPe90NW1gjPOOCPpOePG9Xkv3HqrNoAvvjjDgmaA6uq3WbQouZGxeLE2kb70paRR04pz8J3v\nwKJF+hkK1dWbWLQoe0ZGuti6Vd/xyy7TBU/DUl3dmDmh4hDWyKhwzj3trRyyBbhJRF4HbsygbLnH\ntxQmT9bPSSch006h66PAj+OvRR48NRFmZBQOZmQYBUBh6omGBqS7m2IXobdiLG7uYTD2FAi40ooM\nrO8jkYE6JFhPBPq3cA4OPrivQbdvn7rlRs/pCOqdykrtOQ3DuHFqWFRUwBVX6Grt8aiurmPRouRG\nxpo1uirW+PHh5RgutLfrvZgwAdrbe1KWv6Rk4LMZaeQqjyKx36dCYiSuLtUpIkXAOyJyHVAPJB8/\nzHec0zXO/SVsvRXPk+2qCjaSYfQn3g69hjGCKEw94e2M11U0iu0zTmHSUUfDtv51Y3SjyDccouvP\nWEZGJKK/o+f4icQ2Mgaz8kxxcfo3qkulw2244d+LwdbZwfs5UsmlIVVUBC+8oG5TQ2Hz5pm8+GJ6\nZMome/boqGVra2ruV/v2TR3y6E+qhDUyvgpUAl8BvosOhX862Ukicj5wK1AM/Mo594Oo8FnAb4Ap\nwB7gMudcXSB8LLAGeNA5d5137CTgTqACeBT4qr8ue9rxNYE3fd+VlvVTFmZkmJGRCnavjBFOYeqJ\nzk4kEsFJEV3lo3FFxZ5cwTwMNDIg3EiG/zvY+C8q0njRDVnfyPB7e8MSbBSnqzMkn/XcUA0uMzIy\ny4c/TFr2aikv38e73z30dLLN9u06J+aEE+Cgg8Kft2HD/swJFYekRoa3odI/OeeuB1pRP9ukeOf9\nDHg/UAcsFZGHnHNrAtF+CNztnLtLRM5BJw1eHgj/LvB8VNK/AL4AvIoqj/OBx8LIlDJ+7VhWBscc\ng5t6MOL6DIjBukvlc+XrY0ZGauTzszaMZBS0nti/H5wjIkW0Fo/nF0/P48Xd6nJz/PF9y3wG64B4\nOiSRu1S0kQEDG3l+3FhpJ6KoqC+tdBkZ+TySkUjHh8HcpTLL8cenJ53S0qas9+yngw0bYNMmXSAi\nlcnvpaX7MidUHJK+Qs65XiD5rKeBnApscM5tcs51AYuBi6LizAee8X4/Gwz3eqKmAn8PHJsGjHXO\nveL1St0NfGQQsoUjWFuPHn2g9g8zkpGoF2MkNMzNyEgNm5NhjGQKWk9EIkgkQgtj2RmZxJ6OSoqL\ndVKsv0RtvJGMMO5SsYwMf6Qi3pwMb2un0Pg97+l068xnI8NGMpJTXDzyDanhykjcjO8NEXkI+BNw\nYGVv59yfE5xzKFAb+F8HLIiKsxK4GB0q/ygwRkQmAU3A/wKXAYG1NzjUSyeYZoIpakMk6BSLzskQ\nsZEMMCMjFo2NuuJDLJqadCLh9u3ZlSlIY2NZTq+fTQoprwDNzcNi56/C1BM+InD8SVB0GFU1eijY\nGEh1JMOP4xsZwb0LEhkZfhqpjmQ4pxPKd+6Mv9QthH+3du/W9HbsyL+N6XzZGxsHV5e0tOhIVj7W\nQWHzu3evboj3xhv52w7YsGF0v9XZ8oW6ur53NZX3vKUl+xu3hL3iKKAROCdwzAGJlEcYrgd+KiJX\nosPd9UAvcA3wqHOuTgZZekXkKuAqgKlTp1JdXZ1yGsc1NjIe6G1tZUd9PW+P2sieyB5efHE3NTWH\nsHTpTnbu7O/jtnlzJTU1B/HCC/VMmNAdM939+4upqZnB0qW7aWkZ2vaP3d3C2rVj6ekZ+lve3l7O\n8uUrQsWtrx/FW2+Np6RkF5WV+dllk0p+k9HSUsLLL0+OG15bW0FxsePhhzvScr3B0N09g9tvD7mV\na55TSHkFGD16KuPHV+dajILUEwva2ih3johzbGrZy5b929i9u4LOzh5eeGETY8f2sGbNFPbsKaO6\nup5XXpnIxo2jeeONCaxa1cbUqX0t+nXrxuAcLF26j/r6CrZtq2Dz5r1s3jyJ6uq9dHXpEpQvvDCZ\njRvH8Otfb+fgg/vqlI0bR7Nu3RiKiqClpYWXXgrng711ayUrV05k165RrFzZRklJ/B6wsO9We3sx\n9fUVvPZae97piO5uYc+ecjZtaqOiYjIPP1yT0vmbN1fS2VnM6tXZd08ZKl1d4fK7a1c59fUVPP10\n5mXKFL29cykubs61GIOmvr6FUaPCDxUedFAlY8dWZ06gGITd8TuUf20U9UDQW2y6dyyY7ja0hwoR\nqQI+5pxrFpGFwJkicg26OkmZiLSiPVnTE6UZSPt24HaAk08+2S0ajOPdhAlEgJKSEg79xCc4svhU\n9jQJCxfOY9UqWLBgNkcd1f+UqVNhyxZYuHA2B8dZarq1VdckP+mk2Zx8cupiBVm3TjdlSXWiXyw2\nb97MnDlzQsXdv9/fXfbgvBwOh9Tym4zmZr0fc+fG3gG1u1t78448Mi2XGxR1dXVMn558/fORQCHl\nFaC1dRODquPSSMHqCSACSFExs48+hs5dk+jp0VVfTj/9ECZN0h7xbdvgrLOO4H/+R3u6GxvBuYk0\nB9o4fg+yyFSamrReqa2d6I1QjKW1VW9VV5e64zQ2jutX7+/dq6MQxcXQ0XGwv2ZJUsaNg9mzdTTj\niCOqKCuLHzfsu9XSorLMnVvFuHHh5BhOlJTAxz42no0bX2XBgujBtcQ8/riO4Fx44aQMSZc5li9f\nzonBrenj0N2t5TWfPTLWrFnN/PnH5FqMQVFWBtOmpTYMs27dzqzribA7fv8W7ZHqh3PuswlOWwoc\nISJz0Ar+EuBTUelOBvY45yLAt9AVRHDOXRqIcyVwsnPum97/FhE5DZ3QdwXwf2HyMCi8t6fHFbF6\n96GsbRL27dONkLZsgeXLB65wsHWrGhFDdZfasQPWr08uYk2NyvKRjwxuLfJRo+Ckk3TIrbp6C4sW\nhWt0+5s+/fM/k5cKBFLLbzLeeQf+8Af4whdirzF/2226Y++nPjUwLFtUV29g0aI83IJ2EBRSXgGq\nq7cCud1Yu2D1BNBNKXuLJvD8q6Ooa1J3m9Gj4Y47oKoKVq7UToZnntF5GgsXqu5YuBCOProvnb/9\nTeviCy6A11/Xuv1HP9LP3LlwkTcb5ec/hyefHDjp8/DD1VgoLoYLL9S6PSyvvgqPPQY33KCunfEI\n+27V1cGvfgWXXgpHHBFejuFGd3d7yp1D69eri+zjj2dGpkxSUzORnTtzLUV22LJldN66eoHWK6nQ\n1jY2M4IkIKy71COB36NQv9htiU5wzvV4a6U/gS5N+Bvn3GoRuRlY5px7CFgE3CIiDh0GvzaELNfQ\ntzThY2RqxRA4YCl0dJewfIXwptcz45zu4PryywMNgcZGaGjQ8L/9LbYh0dmpCqSzUxvrJSUDjYTq\nali7NrmIO3fqtZYsid2DHobp02HatNTOsTkZ/Um2/KNN/DYKgILUE8459lNJU3cVy5fDnk7o6FCj\n4qGHtMdx1y7tZBg3TuuBTZvUECkt1REOnzVr1EAoK9M4/ihH9MZ9ZWVw5plw7rkD5Skq0k3wUp0U\nOtQVlaIZCXMPB8t73wtpGiTPOkuX7uKUU2bnWoysUEh5BVi1KvuuYWHdpR4I/heRe4ElIc57FF0+\nMHjsxsDv+4H7k6RxJ6os/P/LgGNDiD10ensRdML3YYcJH52tQ8Dnnw933qk9NIcd1v+UW25RpbFl\ni34fHmNj1JISVS6jRqmyqKmB+vr+RkZvrzb8P/e5xCKuWgUPPgjXXguTUhyZ3bgR7r13cKtgmJHR\nn2QK2owMY6RTqHrCb0OXFfVy6gJh7MFa/0+YADfeqIbF5z8PU6bA178OP/2pjlSXlenxoGfKr38N\n5eVw2WV6bjwjwzl1zT02Rg6bmvQ7VWMh3ftk5PPqUkOlqir2s8kHdu9uy1vZU6WQ8gqwe3f254QO\ndqr5EUAKW4DkKY06yc4hFJcKRUXay1RcrBVoaWn/FT9A/zunFXZxsRoi0bS3q1vVeefBvHnwk58M\nrIh9pRKdfjS+LGVlyeNG46/4MRglYEZGf5IteWhGhlGAFIaeCPTU+/qh5P9v797j5K7q+4+/3rO7\n2d3cQ4JrIOESCWIsl2KKoKCRR0Vs/amgLfJrK7S2FK0+annQCg9b2vLQem29VH5V2tp6qSJitdQb\nUHXBCyJBckOaEEIgCSGRQMg92eyc3x/nzO7s7Mzs7OzMzs7M+/l4jPnOd76Xc9bh+5nP95zvOZ3x\n1d0N06cPT57X0TE8nK00+rqdH1fyh70tTDLSJONF5Q9jOx61bslo5yTDzKJKn8nYy8i+tk8B76lL\niaaSZ54B4OC0WXR0aCgwlLsYd3TEwHD0aOmLfH4zcqkLcWFQKaXagAITCwJOMkaqJED7b2WtrG3j\nRKpykAjE/8gLr/H5cSNfuSFs868XxVoyxkoyGt1dKnecduwuZWZRpd2lZtW7IFNVAI5qGpmO4eAx\n1mR8IcTnLUpdrCtJMiqdFGkigcFJRu1U0l3KrJW1bZwY+m9bI/77z2+xgOE5LGB4feH1M7+FolxL\nRrkko9qJunLnrtU1vXC+DzNrPxVdhiRdImlO3vu5kuo3g+oUlOnUiAABxS/GPT1j/wDPX1/qbk+5\n5vDC7fKPMx5OMmrH3aWs3bVtnAiBDgbJErvWFs7anZsYrzDJgLFbMsp1lyp1zZ9IS0YtZxB2dykz\nq/SS8tchhOdyb0IIu4G/rk+Rpp4AFXeX6uyMnw8OTm53KScZjeUHv83aNE4cPgLAoIantS4cWSmX\nZBQqvCbUsrtUNc9k1CPJcCuuWfuq9FHhYpeeyZ+fvGE01JIxVneprq7hB78nkmRU+qO0FkmGR5ea\nOLdkmLVrnAiAeKLzZJTRiGtjfpIRQnUtGbnXZDyTUer6VY3csb7xjTinUrPavPlE7r670aWYPO1U\n33aqK8CRI31M9pytlQaAlZL+Abgpvf8T4IH6FGmqEbGv7fAVfayWjLEe/M6pRUvGRH7suyWjdvzg\nt1n7xolBMgSGf6GXasmoJskodm2pR3epwcHatmTMnAm/+Zuwd2/tjtkIs2Y9x1lnNboUk6ed6ttO\ndQXYtGn/pJ+z0iTjXcBfAV8h3ra5i8omRGoZylBRS0YuySj3TEV+APrc5+CHP4Tt2xmRUd93X3y+\n44knypdr82bYuDGed7x3ofbvjxMKPvssPP/5sGnTCdx7b2X7Pv54nOX6wx+u7d2v8ejogMsvHz3r\nbSO4u5RZe8aJewfP4Q5W8PCRs3hiTQfTeuMP695euOKK2Lq9ZUsczvbjH4/X9r1748zchdeEAwfg\nm9+M1/RHH43rDh6M1+jt2+MEfQADA/V58LuWSYYEv/ZrtTteo2Qyuyf97m8jtVN926muAJnMvkk/\nZ6WjS+0HrqtzWaaevM6k6siMK8k4enR4HopCuf0OH4atW+NMsEuXwumnD2/z5JPxTlD+RE3FdHXF\nZOHss8f/Y3/v3piknHYaLFkCHR17OfPMyvadNg327avuvLUwMAArV8bZ1adCklFJdymzVtauceJJ\nFiICJ3Zs4eAC6J4Rr48zZsDs2fGH+65dcVK+M86IycOuXXFW8MIf9fv2xaQiN4nr7Nlw552wenX8\n7Be/GN62p6d4eabKMxlmZpXOk3EX8FvpQT4kzQNuCSG8pp6FmwqeYR7v2v9Bnv3YUp5NPxTnzo13\nlX7ykxhM8j31FDz2WPwsm4UPfaj4cffuHW4+DwG+853hz3JJCsBHPlK+fLkfr7feWjyolHveInfu\nL30pt+b00huXcMst496lZrJZuPHGiRzhFbUqypD3va/4+lyC2qhWH4Bs9oK2+RHRTnUFyGRezsGD\njS1Du8aJgJjOAZZ0Psz+RYHpc+CXv4wJwoIFcTK+hx+ON3RuuCEmGAcOxFaJiy6Kx9i3L14jBgbi\nNXvVqpiEHDgAX/lK/PG/f388Rs7PfgY33VSkPOk4AwNx1vFKHToUb2yZmdVKpd2lFuQCB0AI4VlJ\nrT+TK3CQHvaF6Rx/7GG6M7BnDxxzTLyQn356DCD59uyJSciTT8aL9vHHFz/uE0/EO1Y9PaMnajp6\nNDaPd3aWvluVL5OJTfHF7N1b+sdtLhgNn3eQzs7Kf5lVMiN5PR09OrHhEcdb37FIpVuvICakjUwy\nDh06Qk9Pb+MKMInaqa4AmcxhoMyXb3K0ZZyIN3pCnIhPGtXS/epXx+vs2rUxadi4McaJefPghS+M\nScfOnTGu7NsXk4lly+K+u3bFf3PbVhIPIF6HTj99/NfnE08c3/ZmZuVUegnKSjohhPAEgKSTGDmz\na2sKcdSQXh3k/5z/LPfv6ePRR2H58phcvP3tpS/6X/96fG7h3e8u/vmtt8a7XX9SpMfyxo3wrnfB\nG98If/zHE6vChz8ML35xfABvLP39P2ZFG3VQbL/63tc29W2nugL0968EVjS6GO0ZJyjeL+ngwZg0\nLFwIb3tbXLdjB3zhC7B7d2zFeMUr4Ec/iq0S11wTu0Pdcw9ce61bFcys+VWaZLwX+JGku4lX1AuA\nq+pWqikkpNGlSM9idHXBe99bwX5jzNg9OFj+LlOlM35XUg4/cGxmk6BN40S8GQUMXWx37YKnn44P\nf3/608Nb7t0LDzwQE5AjR2JSsWlTfDA8t10mU3mLhZnZVFbpg9/flbScGDAeBL4BNLgH8OQYoIuj\n2Qwr7xer9sfA8ZrXDDdj5xxzDMyfP/x+y5YYSEqN1nTgQHzgu1h3n50740PhtUgOnGSY2WRo1zgR\nEGL4QpubJwliK/Jllw1vu2NH7Ea7Zw+88pXwspfF5/fWrBnebvbsxnZDNTOrlUof/P5D4E+BRcAq\n4FzgXuDC+hWt8QIwmMY+nz4TutPcF7t2xRaNuXPjdnv3xrtS+Q9ZDw4Oz/xdTHd3DCa//OXoz555\nZvgYP/5x9eXv66tdi4iZWTntGicOhh52cQzPHe1m65PiwME4MMiBA/H5itNOG77RM3s2HHtsTCJO\nOgle9KJ4Q2rHjrhsZtZKKr1f8qfArwE/DSG8StJpwN/Vr1hTw4GBLgIiG8SRgQxdXXE+id7e2J/2\nHe+I2915Z7wblS+EkQ/wlVKsJSM36tT69TFYVWvGjPLzdZiZ1VBbxoknswvZwfPZPdjHxkcz7N0b\nE4yBAXjwwXhTasGCuG2xoax9jTazVlVpknEohHBIEpK6Qwj/K+mFdS3ZFHBosDM2hQsGjg5PshfC\nyObsV78aXvWqkft+9asxuFx99fjPu2FDHBr2D/8QjjuuurLfeWcczcTdpcxskrRlnBgMGXo5yNm9\n95Jd+hs89VRssVi7No4ol38jKT/JyJ+U1a3NZtaKKk0ytkqaS+xje5ekZ4HH61esqSEAzzGH7RzH\nvL2z2LIrDkE6ffrIoUqLDV2aG9613JCmpeRm7+7qqm7/3DFyCZGTDDObBG0ZJ3I6MvG6n8nE5+2O\nOSZ2iRprIk63ZJhZq6r0we9L0uLfSPoBMAf4bt1KNVUE2M0cDtJDSOOf5/rSjnXnqRY/7ieyf25m\nct8lM7PJ0LZxIskqM6LVYvr00fMXlWrJcJJhZq1o3GNYhBDurkdBpqQQRw7p5Cjnnb6fvY/EZvAz\nz6xg1wkEjrHufFUik3FLhpk1RjvFidzoUoOKg4TkrreZzPCNnqFtSzyT4RtBZtaKfGkrIz8eZGfM\nGl5fwQ/3Rv+4d5JhZjYJQgACQZlRLRWV3DDyNdrMWpWTjDLiHaoULGbOHgoYlQaOau9O5Y5fi+5S\nEz2OmZmVFtJEfNmOaUWv+4UtGYXXZbdkmFmr8qWtjBBEALLqINM18k/VDC0ZxZbNzKyW4s2o3Ud6\n2blz+AZPrrtUvmI3fhodK8zM6sU/P8eQu0v12Gaxc2flXZBq8UzGRFsyii2bmVntHcl20tMDJ544\ncn2pZzI8hK2ZtTpf2so4SudQl6lHNordu+Hgwcr2bfTdqfyg5STDzKx+RCBLBz09cehaKN6SUYyH\nsDWzVlXXJEPSxZLWS9oo6boin58o6XuS1kjql7Qob/3PJa2S9JCkq/P26U/HXJVez6tX+WN8ECiQ\nycQokOtTO9VbMpxkmFkzaPY4kUVAYDBkig4dXqwlQ/IQtmbW+sY9hG2lJHUANwGvBrYC90u6PYTw\ni7zNPgp8PoTwOUkXAh8Afg/YDpwXQjgsaSawLu37ZNrvd0IIK+tV9ny5loxcFDhyBL7//ThZ3o4d\npffbvx9OOGEySlicn8kws6muVeJElgw/HzyTpx6HwUGYMSOGjJ074eabYc6cuN3TT8PKlXD4cIwl\nK1fCgQMwf/5klNLMbHLVLckAzgE2hhA2AUi6BXgDkB88lgHXpOUfEGeKJYRwJG+bbhrUrSven4pN\n4Zk4BDqHD8O+fXDyyXDKKeX3P+206s5bi5aMF74wBrTcspnZFNT0cQJi19oDoZfubjj2WFi4MHab\nOnQoPqOxYEHcbsYMePTR2O120aLhGLJkSaNKbmZWP/VMMo4HtuS93wq8tGCb1cClwCeAS4BZkuaH\nEHZJWgx8CzgF+PO8u1MA/yZpEPga8L4QajF93Whx9PP4S18Fv/hf/GJ4/evrcdbamDcPXve6RpfC\nzKysFogTIkOWbBAzZ8abOosWwWOPQVcXXHRRfA/wyCOwbVu8UXX++XDBBfUokZnZ1FDPJKMS1wKf\nknQlcA+wDRgECCFsAc6QdBzwDUm3hRB2EJvAt0maRQwevwd8vvDAkq4CrgLo6+ujv79/3IU79ehh\nAEI2y65dOzlwYCbPPnuYQ4eybNjwNP3928d9zEps2jSDzZuP5Sc/2cacOQN1OUcx+/btq+rv1Kxc\n39bVTnWFlq/vlI4TWURAHDgsHt9wgBNOeJr9+w+wfXsPnZ3wk59s53nPi7Fky5ZeNm/u4+DBDh58\n8GkGB58b9/karcW/a6O4vq2rneoKjalvPZOMbcDivPeL0roh6a7TpQCpT+2bQgi7C7eRtA64ALgt\nhLAtrd8r6UvE5vZRwSOEcDNwM8Dy5cvDihUrxl2BDWEWIDIZ0df3PLZvh7lzpzNjBrzoRfNZsaI+\n/ZDmz4cnnoCXv/ykoWb2ydDf3081f6dm5fq2rnaqKzR1fZs+TtzFj9KzeyKbnU5Hxwmceir09sbn\n4c4996Sh5/M2bIitGfv3w9lnL+b888d9uoZr4u9aVVzf1tVOdYXG1LeefVjvB5ZKOlnSNOAtwO35\nG0haIClXhuuBz6b1iyT1puV5wPnAekmdkhak9V3A64B19arAfmZwkB56dWjESCDx/PU6q2fqNrO2\n0fRxItepdn/XXDo6hudSKrplKP2ZmVmrqVuSEUI4CrwTuAN4GLg1hPCQpBsl5Z5mWEEMChuAPuD9\naf2LgPskrQbuBj4aQlhLfLjvDklrgFXEO17/XK86PJ5dxHpOpTtzZNQP/o6Oep3VzKw9tEKcGBaD\nRDYb35UbwhZ8E8nMWl9dn8kIIXwb+HbBuhvylm8Dbiuy313AGUXW7wdeUvuSFndH9iJ2MY8jHdOH\nkopK58moBQchM2t1zR4n4viDMJjViHkycstF9/C13czagGdQKCONK8WhrlnAyKbues494eZ0M7Nm\nEQgp0ShMMqB0S4aZWatzklFWjAgD2Q727Rv5yWRMcOe7XWZmzSEQWzIKu0uN2CbvRpWv72bW6pxk\nlBXvUB040snjaSbXnMl48NvMzKa6GAxycypV0pLhBMPM2oGTjDKUWjIOZ3ro6oLubjjhhBgo3JJh\nZmZH6OIQPWTD6GcyyvH13cxanZOMMQTE3sGZ7NkDnZ3DrRl+JsPMzAKZoef3Mpk4m/fOnWOPLmVm\n1uqcZIwhIAYRAwNw+DAcPQoLFngIWzMzy3WTCiCYNSvGhq4uOPHEItvmdZdyS4aZtbq6DmHbKubN\nGGDRoi46O+FVr4qJxmS0ZDgImZlNbRkGEYHuriyLF8NLXwp/9Edw6BCsXz+69cKtGWbWLpxkVEAE\njhyJycUzz8QuUz098MQTle2/YAFMn17fMpqZ2eTLpAFCDtLDwYPw3HOwdWts+X7uOVizJnafAnj8\ncdizB3p7G1tmM7PJ4CSjAtkg9u6Nz2Rs3Ag7dsCcObB9e2X7n3IK/O7vVn4+t2SYmTWHLBkGmMaB\ngWns3g0PPhgHCTl6NC4/+ODofc47L25jZtbKnGSMISCyQcyZA8uWwZveBPfeC4sWwUUXjb3/XXfF\nO1pmZtZ6QnpN7xzgssu6+fVfh+c9L94s2rEDjhwZuX1vL/T1weLFjSitmdnkcZJRISm2Xhx/PMyf\nD89/PixZMvZ+06ePP8lwS4aZWbMQAjoygeOOg3PPHf7kBS9oWKHMzBrOo0tVIDfmef6QhJUmAJnM\n8AywZmbWWkLe/3b6tp2Z2RAnGWMIiAOH45+po2P8rQy5yZnGdU63ZJiZNZ2lSxtdAjOzqcNJRgWy\nIcOSJbFV4uDB8bVMVJNkmJlZc5nTc5i+vkaXwsxs6nCSUcZcdhOATIe48MI4Gsidd8YZXSttFndL\nhplZKxNK3aU8YpSZ2TD3IC3j+WxnE0vo6c5y2WWwbVtMMCAOS1sJt2SYmbWu3OV91uw4J5KZmUVO\nMsoIxKaEnmlqSB5yAAAWcUlEQVRZMhk49dTxH0Ma/4PfbskwM2sOgymMdk8bHhzEzMzcXWoM8Vd+\nRtX/4M9k3JJhZtaqAhpKNHxjyMxsmJOMMQSACSQZE+ku5YBlZja1KaUZ4Gu2mVk+JxkV0CQnGW75\nMDNrFoGjdOUavs3MLHGSMSahjNySYWZmRQxfqP1MhpnZMF8SKyBUdfBwS4aZWWvLkKVv7mHfGDIz\ny+MkowJSmNCD3+MdXWr4vNXtZ2ZmZmbWSE4yyhigk6N0+pkMMzMrKjfUufCF28wsn5OMMvYyC4DO\nrsaMLmVmZk3CLc9mZiPUNcmQdLGk9ZI2SrquyOcnSvqepDWS+iUtylv/c0mrJD0k6eq8fV4iaW06\n5iel+nUqGqQDgNkzBqs+xkRaMtxdysxaXbPHiaFz1vsEZmZNpm5JhqQO4CbgtcAy4HJJywo2+yjw\n+RDCGcCNwAfS+u3AeSGEs4CXAtdJOi599k/AHwFL0+vietUh1wyeyVQfPtySYWZWXGvEiRynGWZm\n+TrreOxzgI0hhE0Akm4B3gD8Im+bZcA1afkHwDcAQghH8rbpJiVDkhYCs0MIP03vPw+8EfhOPSqw\nj5kEoGMCf6VMBgYGoL+/8n2eeCL+65YMM2txTR8ndrGAfcxkpq/XZmYj1DPJOB7Ykvd+K/FuU77V\nwKXAJ4BLgFmS5ocQdklaDHwLOAX48xDCk5KWp+PkH/P4elXgKF2AWLb0CNBb1TEWLIDBwfElGQDz\n5kFHR1WnNDNrFk0fJwLiEL1Mr3IUQTOzVlXPJKMS1wKfknQlcA+wDRgECCFsAc5Izd/fkHTbeA4s\n6SrgKoC+vj76x/srH+jhEN0cYv/erfT3Pzju/XNe+crq9rvnnqpPWZV9+/ZV9XdqVq5v62qnukLL\n13dKxwmATgYIR56iv/+RqvZvJi3+XRvF9W1d7VRXaEx965lkbAMW571flNYNCSE8SbxDhaSZwJtC\nCLsLt5G0DrgA+HE6Tslj5u13M3AzwPLly8OKFSvGXYFvcj/TGGDhicexYsWLx71/s+nv76eav1Oz\ncn1bVzvVFZq6vk0fJ77IPyMGmTH/NFaseMm49282Tfxdq4rr27raqa7QmPrWc3Sp+4Glkk6WNA14\nC3B7/gaSFkjKleF64LNp/SJJvWl5HnA+sD6EsB3YI+ncNFrIW4H/qlcFsoh9zCTjhyPMzOqhBeJE\nBg0NE2JmZjl1SzJCCEeBdwJ3AA8Dt4YQHpJ0o6TXp81WAOslbQD6gPen9S8C7pO0Grgb+GgIYW36\n7B3AvwAbgUep08N8MDyE7fReDw9lZlZrrRAnAiJD8OBSZmYF6vpMRgjh28C3C9bdkLd8GzCqD20I\n4S7gjBLHXAn8Sm1LWlxId6iWnFD9PBlmZlZas8eJSM4xzMwKeMbvsmILRnbatAaXw8zMzMyseTjJ\nKCPemQqo20mGmZmV4aYMM7MRnGSUEdsx5FnxzMyspIDDhJlZIScZFcg4eJiZWRnCA4SYmeVzklEB\n36EyM7NihlILxwkzsxGcZJQx9ExGg8thZmZTVYwQZ57pSGFmls9JRgUynQ4eZmZW2uJFY29jZtZO\nnGRUoqOu04mYmVmz870oM7MRnGSUkU1RQx3+M5mZWWkeIMTMbCT/eq6AH/w2M7NRwvCIUnI0NTMb\nwZfFCjjJMDOz0oLjhJlZAT9sUIFpnvDbzMyKGKQD8CMZZmaF3JJRRi5o9PU1tBhmZjYVhTD07N68\n2YMNLoyZ2dTiJGMMcjO4mZmVJLo5RFdXo8thZja1OMmoQMZ/JTMzK0m+GWVmVsA/nyvgJMPMzMzM\nrHL++VwBJxlmZmZmZpXzz+cyciOguxnczMzMzKxyTjIq4CTDzMxKEcGBwsysgJOMCri7lJmZlRbG\n3sTMrM3453MFOjoaXQIzM5vK3JBhZjaSk4wxBA9NaGZmJQSE5/s2MxvNScYYRHBLhpmZmZnZODjJ\nqIBbMszMrCwHCjOzEZxkVMAPfpuZmZmZVa6uP58lXSxpvaSNkq4r8vmJkr4naY2kfkmL0vqzJN0r\n6aH02WV5+/y7pMckrUqvs+pZh3jOep/BzKw9tUqcMDOzkeqWZEjqAG4CXgssAy6XtKxgs48Cnw8h\nnAHcCHwgrT8AvDWE8GLgYuDjkubm7ffnIYSz0mtVveqQe5ivt7d+ZzAza1etESci34wyMxupni0Z\n5wAbQwibQghHgFuANxRsswz4flr+Qe7zEMKGEMIjaflJYCdwbB3LWkJABLq6Jv/MZmZtoAXihJmZ\nFVPPJON4YEve+61pXb7VwKVp+RJglqT5+RtIOgeYBjyat/r9qXn8Y5K6a1vsEWev36HNzKzp44Sn\n4TMzK66zwee/FviUpCuBe4BtwGDuQ0kLgS8AV4QQsmn19cBTxIByM/AeYhP6CJKuAq4C6Ovro7+/\nv+pC/uhHP2TmzMGxN2xy+/btm9Dfqdm4vq2rneoKLV/fqRsnstmhxTVr17Jr9uPj278Jtfh3bRTX\nt3W1U12hMfWtZ5KxDVic935RWjckNXFfCiBpJvCmEMLu9H428C3gvSGEn+btsz0tHpb0b8QANEoI\n4WZicGH58uVhxYoV467A11hDQFxwwQXMmTPu3ZtOf38/1fydmpXr27raqa7Q1PVt7jiRzfIZvgzA\nGaefzukrTh7f/k2oib9rVXF9W1c71RUaU996dpe6H1gq6WRJ04C3ALfnbyBpgaRcGa4HPpvWTwO+\nTnzY77aCfRamfwW8EVhXxzqQcWO4mVm9NHecCMPxwQ9+m5mNVLckI4RwFHgncAfwMHBrCOEhSTdK\nen3abAWwXtIGoA94f1r/28ArgCuLDEH4H5LWAmuBBcD76lUHMzOrn5aKE84yzMxGqOszGSGEbwPf\nLlh3Q97ybcBtRfb7IvDFEse8sMbFNDOzBmmFOCG3eJuZjeK5rMvIhQ3foDIzs1KcYpiZjeYkw8zM\nzMzMaspJhpmZWdUUZ1Ryk7eZ2QhOMszMzCYg4BzDzKyQk4wydjMXcPAwM7Mi0hC2HurczGw0Jxll\ndJDlEN2NLoaZmZmZWVNxklFWYD67Gl0IMzMzM7Om4iTDzMxsQoL71ZqZFXCSYWZmVo3gZzHMzEpx\nklFG7r6Ub1CZmVkxIUUKz/ptZjaSkwwzM7MJCPhOlJlZIScZZmZmEyA/k2FmNoqTjDICchO4mZmV\n5fTCzGw0JxljCMg3qMzMzMzMxsFJhpmZ2YS4xdvMrJCTDDMzswlyi7eZ2UhOMszMzCbKWYaZ2QhO\nMszMzKrkjlJmZsU5yaiAb1CZmdkonvHbzKwkJxlmZmYT4PtQZmajOckwMzObgABu8jYzK+AkYwye\njM/MzMbiHMPMbCQnGWZmZhPgm1FmZqM5ySgjS4YsGd+hMjMzMzMbBycZZYhAhmyji2FmZlPdzJmN\nLoGZ2ZRS1yRD0sWS1kvaKOm6Ip+fKOl7ktZI6pe0KK0/S9K9kh5Kn12Wt8/Jku5Lx/yKpGn1rIOZ\nmdVP88cJxdfcufU7hZlZE6pbkiGpA7gJeC2wDLhc0rKCzT4KfD6EcAZwI/CBtP4A8NYQwouBi4GP\nS8pdwT8EfCyEcArwLPC2etXBzMzqp1XihHvUmpmNVs+WjHOAjSGETSGEI8AtwBsKtlkGfD8t/yD3\neQhhQwjhkbT8JLATOFaSgAuB29I+nwPeWMc6AMHPZJiZ1UeLxAmPLmVmVqieScbxwJa891vTunyr\ngUvT8iXALEnz8zeQdA4wDXgUmA/sDiEcLXNMMzNrDo4TZmYtqrPB578W+JSkK4F7gG3AYO5DSQuB\nLwBXhBCyGsetIklXAVelt/skra+yjAv+tffqp6vct9ksANqlruD6trJ2qitMrL4n1rIgddAUceLT\np/1Ju3zf/N9Wa2un+rZTXaEBcaKeScY2YHHe+0Vp3ZDUxH0pgKSZwJtCCLvT+9nAt4D3hhB+mnbZ\nBcyV1JnuUo06Zt6xbwZunmglJK0MISyf6HGaQTvVFVzfVtZOdYWmrq/jRJNpp7qC69vK2qmu0Jj6\n1rO71P3A0jTKxzTgLcDt+RtIWiApV4brgc+m9dOArxMf9sv1qyWEEIh9ct+cVl0B/Fcd62BmZvXj\nOGFm1qLqlmSkO0jvBO4AHgZuDSE8JOlGSa9Pm60A1kvaAPQB70/rfxt4BXClpFXpdVb67D3ANZI2\nEvve/mu96mBmZvXjOGFm1roUb/pYKZKuSk3qLa+d6gqubytrp7pC+9V3qmmnv3871RVc31bWTnWF\nxtTXSYaZmZmZmdVUXWf8NjMzMzOz9uMkowRJF0taL2mjpOsaXZ5iJH1W0k5J6/LWHSPpLkmPpH/n\npfWS9MlUnzWSzs7b54q0/SOSrshb/xJJa9M+n0yTXFV1jhrUdbGkH0j6haSHJP1pi9e3R9LPJK1O\n9f3btP5kSfelc34lPfyKpO70fmP6/KS8Y12f1q+X9Jq89UW/49Wco0Z17pD0oKRvtkFdN6fv2ipJ\nK9O6lvwut7JS36upQm0UI9Lx2yZOqA1jRDqH40QzfZdDCH4VvIAO4qROS4gTPK0GljW6XEXK+Qrg\nbGBd3roPA9el5euAD6Xl3wC+Awg4F7gvrT8G2JT+nZeW56XPfpa2Vdr3tdWco0Z1XQicnZZnARuI\nMwG3an0FzEzLXcB96Ry3Am9J6z8NvD0tvwP4dFp+C/CVtLwsfX+7gZPT97qj3Hd8vOeoYZ2vAb4E\nfLOacjRZXTcDCwrWteR3uVVf5b5XU+VFG8WIdPy2iRO0YYxIx3WcaKLvcsMvglPxBZwH3JH3/nrg\n+kaXq0RZT2JkAFkPLEzLC4H1afkzwOWF2wGXA5/JW/+ZtG4h8L9564e2G+856lTv/wJe3Q71BaYD\nPwdeSpxIp7Pwe0ocnee8tNyZtlPhdze3XanveNpnXOeoUR0XAd8DLgS+WU05mqWu6ZibGR08Wv67\n3EqvUt+rRperSDlPog1jRDp+W8QJ2iBGpGM6TjTZd9ndpYo7HtiS935rWtcM+kII29PyU8QhH6F0\nncqt31pkfTXnqKnUJPmrxDs3LVvf1Cy8CtgJ3EW8y7I7xGE/C883VJb0+XPEoTvH+3eYX8U5auHj\nwF8A2fS+mnI0S10BAnCnpAcUZ52GFv4ut6hm/Zu1xfesHeJEm8UIcJyAJvsu13PGb2uwEEKQFJr9\nHPkUZ/z9GvDuEMKe1IVw0soymfUNIQwCZ0maS5x07LTJOO9kk/Q6YGcI4QFJKxpdnklyfghhm6Tn\nAXdJ+t/8D1vtu2xTU6t+z9olTrRLjADHCZo0Trglo7htwOK894vSumawQ9JCgPTvzrS+VJ3KrV9U\nZH0156gJSV3EwPEfIYT/rLIsTVPfnBDCbuIMxucBcyXlbg7kn2+oLOnzOcCuMmUstX5XFeeYqJcD\nr5e0GbiF2BT+iSrK0Qx1BSCEsC39u5P44+Ac2uC73GKa9W/W0t+zdowTbRAjwHGiKeOEk4zi7geW\nKo4oMI34QM/tDS5TpW4HrkjLVxD7pObWvzWNDnAu8FxqDrsDuEjSvDSCwEXE/obbgT2Szk0jDry1\n4FjjOceEpTL8K/BwCOEf2qC+x6a7U0jqJfYrfpgYSN5coiy5Mr4Z+H6InSZvB96iOArGycBS4sNe\nRb/jaZ/xnmNCQgjXhxAWhRBOSuX4fgjhd1qxrgCSZkialVsmfgfX0aLf5RbWrHGiZb9n7RQn2ilG\ngOMEzRonyj2w0c4v4lP0G4h9HN/b6PKUKOOXge3AALFv3NuI/QG/BzwC/A9wTNpWwE2pPmuB5XnH\n+QNgY3r9ft765elL/SjwKRiavHHc56hBXc8n9k9cA6xKr99o4fqeATyY6rsOuCGtX0K8IG4Evgp0\np/U96f3G9PmSvGO9N5VxPWn0iHLf8WrOUcN6r2B41JCWrGs65+r0eihXnlb9Lrfyq9T3aqq8aKMY\nkY7fNnGCNo0R6TwrcJxoiu+yZ/w2MzMzM7OacncpMzMzMzOrKScZZmZmZmZWU04yzMzMzMysppxk\nmJmZmZlZTTnJMDMzMzOzmnKSYVOapLmS3pH3/jhJtzWyTNWQtELSy8p8/kZJN0xmmcqR1C9peZnP\nPyrpwsksk5lZMY4TjeE4YWNxkmFT3VxgKHiEEJ4MIby5zPZT1QqgZPAA/gL4f5NTlJr4R+C6RhfC\nzAzHianKcaLNOcmwqe6DwAskrZL0EUknSVoHIOlKSd+QdJekzZLeKekaSQ9K+qmkY9J2L5D0XUkP\nSPqhpNMKTyLplekcq9L+s9JdpXskfUvSekmflpRJ218k6V5JP5f0VUkz0/rNkv42rV8r6TRJJwFX\nA3+Wjn9BwblPBQ6HEJ5O739L0jpJqyXdk9Z1pPrfL2mNpD/O2/896VyrJX0wrTsr/Q3WSPp6mukz\nd+fpQ5J+JmlDriySeiXdIulhSV8HevPO+++pPGsl/RlACOFxYL6k59fm/2Yzs6o5TuA4YVNQPWZj\n9MuvWr2Ak4B1xd4DVxJnsJwFHAs8B1ydPvsY8O60/D1gaVp+KfD9Iuf5b+DlaXkm0Em8q3SIOPNm\nB3AX8GZgAXAPMCNt/x6GZ1vdDLwrLb8D+Je0/DfAtSXq+PvA3+e9Xwscn5bnpn+vAv4yLXcDK4GT\ngdcCPwGmp89yM3OuAV6Zlm8EPp6W+3PnIs5u+j9p+Rrgs2n5DOAocTbQlwB35ZVtbt7yPwNvavR3\nxC+//Grvl+OE44RfU/PViVlz+0EIYS+wV9JzxCAA8QJ8Rrpz9DLgq5Jy+3QXOc6PgX+Q9B/Af4YQ\ntqbtfxZC2AQg6cvA+cSAsgz4cdpmGnBv3rH+M/37AHBpBXVYCPyyoCz/LunWvGNdlOqT6wIwB1gK\n/DrwbyGEAwAhhGckzSFe5O9O234O+GqJ8p2Ull8BfDIdY42kNWn9JmCJpH8EvgXcmXecncBxFdTP\nzKyRHCccJ6wBnGRYszuct5zNe58lfr8zwO4QwlnlDhJC+KCkbxHv2vxY0mtyHxVuCoh41+byMco0\nSGX/jR0kBoNcWa6W9FLgN4EHJL0knfNdIYQ78nfMK+d4VFy+EMKzks4EXkNsyv9t4A/Sxz2p7GZm\nU5njxPg5TtiE+ZkMm+r2Epu5qxJC2AM8Jum3ABSdWbidpBeEENaGED4E3A/k+uOeI+nk1Mf2MuBH\nwE+Bl0s6Je07I/WXrbYeDwOnFJTlvhDCDcQ7V4uBO4C3S+pK25wqaQaxaf73JU1P648JITwHPJvX\np/f3gLsp7x7g/6Zj/AqxKRxJC4BMCOFrwF8CZ+ftcyqwbozjmpnVm+OE44RNQU4ybEoLIewi3jFa\nJ+kjVR7md4C3SVoNPAS8ocg2707nWAMMAN9J6+8HPkW8wD8GfD2E8EtiP98vp+3vZTjYlPLfwCXF\nHugjXrh/VcPt9B9JD8+tI/ajXQ38C/AL4Odp/WeAzhDCd4HbgZWSVgHXpmNckY6zBjiL2N+2nH8C\nZkp6OG37QFp/PNCfjv1F4HqAFMROIfb5NTNrGMcJxwmbmhRCYSufmUEcs5z4EN7rJuFcnwD+O4Tw\nP/U+Vy1IugQ4O4TwV40ui5lZozhOlOY4YW7JMJsa/g6Y3uhCjEMn8PeNLoSZWRtxnLCm4pYMMzMz\nMzOrKbdkmJmZmZlZTTnJMDMzMzOzmnKSYWZmZmZmNeUkw8zMzMzMaspJhpmZmZmZ1ZSTDDMzMzMz\nq6n/D2wF67IP/o7nAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -496,16 +500,16 @@ ] }, { + "cell_type": "code", "metadata": { "id": "F9lB_qL2oz9M", "colab_type": "code", + "outputId": "2a9d25c8-3adb-456a-ae2d-3229a7ed8bfe", "colab": { "base_uri": "https://localhost:8080/", "height": 283 - }, - "outputId": "1fa08bff-0e52-4667-bd24-07dd95aeec5c" + } }, - "cell_type": "code", "source": [ "# Compare the mean test accuracy along with error bars.\n", "def plot_data(data, color, label, gran=10000, max_budget=5000000):\n", @@ -532,7 +536,7 @@ " assert prev_time < cur and next_time >= cur\n", "\n", " # Linearly interpolate the test between the two surrounding points\n", - " cur_val = ((cur - prev_time) / (next_test - prev_time)) * (next_test - prev_test) + prev_test\n", + " cur_val = ((cur - prev_time) / (next_time - prev_time)) * (next_test - prev_test) + prev_test\n", " \n", " all_vals.append(cur_val)\n", " \n", @@ -554,12 +558,12 @@ "plt.ylabel('accuracy')\n", "plt.grid()" ], - "execution_count": 16, + "execution_count": 7, "outputs": [ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEKCAYAAADaa8itAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xt8VNW99/HPL4EQ5I5QVKCASquA\nFoR6Q220R0uvFu2xWK3iU6WttTeOPdVXz6Otp62ec2gf2+ppa3vUeqz1gtXSFrVKiVZbFaiChJtU\nUQMqEuQSEEKS3/PHWkMmYZLMJHuSTPJ9v17zyt5rr733WsMwv1l77bW2uTsiIiJJKOrsAoiISPeh\noCIiIolRUBERkcQoqIiISGIUVEREJDEKKiIikpi8BhUzm2Fma81svZldlWH7GDNbZGYrzKzczEal\nbaszs+fja0Fa+jgzeyYe8x4zK8lnHUREJHuWr3EqZlYMrAPOBCqBJcD57r4qLc99wB/c/VdmdgZw\nibt/Nm6rdvf+GY57L/Bbd7/bzH4GLHf3n+alEiIikpN8tlSOB9a7+0vuXgPcDZzdJM8E4M9xeXGG\n7Y2YmQFnAPNj0q+ATyZWYhERaZdeeTz2SOC1tPVK4IQmeZYD5wA/AmYCA8zsYHevAkrNbClQC9zg\n7g8CBwPb3L027ZgjM53czOYAcwD69u07dfTo0W2qRH19PUVFPavrSXXuGVTn7q+99V23bt0Wdx+e\nyz75DCrZuBK4ycxmA08AG4G6uG2Mu280s8OBP5vZC8D2bA/s7rcAtwBMmzbNly5d2qYClpeXU1ZW\n1qZ9C5Xq3DOozt1fe+trZq/kuk8+g8pGIL15MCqm7efumwgtFcysP3Cuu2+L2zbGvy+ZWTkwBbgf\nGGxmvWJr5YBjiohI58lnO3AJMD7erVUCzAIWpGcws2FmlirD1cCtMX2ImfVJ5QGmA6s83FWwGPhU\n3Odi4Hd5rIOIiOQgb0EltiSuAB4BVgP3unuFmV1nZp+I2cqAtWa2DhgBfC+mHw0sNbPlhCByQ9pd\nY98E5prZekIfy//kqw4iIpKbvPapuPtCYGGTtGvSlufTcCdXep6/Asc0c8yXCHeWiYhIF9NzboMQ\nEZG8U1AREZHEKKiIiEhiFFRERCQxCioiIpIYBRUREUmMgoqIiCRGQUVERBKjoCIiIolRUBERkcQo\nqIiISGIUVEREJDEKKiIikhgFFRERSYyCioiIJEZBRUREEqOgIiIiiVFQERGRxCioiIhIYhRUREQk\nMQoqIiKSGAUVERFJjIKKiIgkRkFFREQSo6AiIiKJUVAREZHEKKiIiEhi8hpUzGyGma01s/VmdlWG\n7WPMbJGZrTCzcjMb1WT7QDOrNLOb0tLK4zGfj6935bMOIiKSvbwFFTMrBm4GPgxMAM43swlNss0D\n7nD3Y4HrgOubbP934IkMh7/A3SfH1+aEiy4iIm2Uz5bK8cB6d3/J3WuAu4Gzm+SZAPw5Li9O325m\nU4ERwJ/yWEYREUlQPoPKSOC1tPXKmJZuOXBOXJ4JDDCzg82sCPgBcGUzx74tXvr6v2ZmSRZaRETa\nrlcnn/9K4CYzm024zLURqAMuBxa6e2WGmHGBu280swHA/cBngTuaZjKzOcAcgBEjRlBeXt6mAlZX\nV7d530KlOvcMqnP31yn1dfe8vICTgEfS1q8Grm4hf3+gMi7/GngV2ABsAXYAN2TYZzZwU2tlmTp1\nqrfV4sWL27xvoVKdewbVuftrb32BpZ7jd38+WypLgPFmNo7QApkFfCY9g5kNA7a6e30MOrcCuPsF\naXlmA9Pc/Soz6wUMdvctZtYb+BjwWB7rICIiOchbn4q71wJXAI8Aq4F73b3CzK4zs0/EbGXAWjNb\nR+iU/14rh+0DPGJmK4DnCcHqF/kov4iI5C6vfSruvhBY2CTtmrTl+cD8Vo5xO3B7XN4FTE26nCIi\nkgyNqBcRkcQoqIiISGIUVEREJDEKKiIikhgFFRERSUxnj6gX6TS7d0NNTViuq4Nt2zq3PO22YweE\nQcFZqaupY9sr29t+vl69oF+/tu/fCbrFv3MOcvg4JEZBRXqsPXvCC6C+PgSZgrZ1T6hIluprnd1V\n77T9fCUlYIUVVLrFv3MOOiOo6PKX9Fid8R8ur7pdhaQQKahIj6Xv4HbSGygZKKhIj9XtvhO7XYWk\nECmoSI+l7+B20hsoGSioSI/Vrb4TO6My3eoNlKQoqEiPpe/EdtIbKBkoqEiP1a2+E7tVZaSQKaiI\ndAe6/CVdhIKK9Fj6TmwnvYGSgUbUS4+0Zw888wzs2xfWN2wYzNtvd26Z2qUO2F6S0y4b3h7C26/m\nts8BhrZv91xt3AgLFkB1dUNa09iWvt502+7dx3HQQdntm+uxc11vqj3HHjQITj0V+vRpnP7WW+9m\n8GA47riWz50kBRXpkebOhZ/+ND1lcmcVJSHF5P4N38ERoUsY2NkFyJulSzOlHs60aQoqBckddu5s\nnGYGAwZklzdbJSVQWtq2fXuy9evhr39tWL/77vD3xBOhqAh27Xqbfv2GdE7hkuD1Dc2uLO2q2UW/\nknbO3VVSAlj7jpGjKVPggx8M/27NMcu8/PLLf+fww49rNm+u663lbalc7T12ar2+HpYtg1dfPfB8\nVVWvMGXKmJYLlTAFlYTU1TVukqf073/gh2Hfvsx5s9GnT2EGle3bs7sE37t38hPf7tsHH/gAbNrU\nOH38eLj//rBcUbGciRPLkj1xR9pXB1W5Xb+reGMlEw+Z1L7zDh8OxcXtO0YHKi3dwcSJnV2K5B11\nVOb0NWte5oQTFFQKUnM/Emtrwxdl07Skz9OVXXIJ3H579vlPOCF8VyVl584QUA45BM48syH9nHOS\nO0enU6e5dBEKKglpLlDs25dsUKmvD6+Wmv6Z1NXBlVfChg2t592yZSJTpoSOv2x/hG7YAPfem7kF\nVlERWmsDs7icvX176EDPhyuvhH/5l7BcUwNbtuTnPD2Kgpk0oaCSgLfeaj5QbN8enp2Urr3/Dzdv\nzn2fp56CG2/MNvdwnnwSfvKT3M/TnCuvhP/8z9bzvfFG6HBM+rvqoIPCJbCU3r1hxIiG9XXrGq8X\nnL0Oxdk/SwVgXZUzYnhu+xxguEPv1rM1smdPpz0pax21jPA3OuXcnWEdHR/0FVQS0NIlKfe2fUG6\nN/y/GziwcYshh+cw7bd2bfj7oQ/B5z/fct7nnqvgjTcm5vxL/oQT4CMfObAPqVcveM97sjvGIYfA\nxz6W23nbwuzAVlgBdQ0cqDi+ct2tvXUu8tzP67Vg7QxmbeYUd9q5O4OCSsGpq0v+mO5w3nkNdysN\nHgxD4o1JJSVw7bUNv7qXLIEbbmh4LG7fvnDNNTAm9s2VloZf5S++GNb/6Z9g5syWzz9kyFuUlSVa\nJcm3QroMlY//NNJlKKi0U3v+f7z1Vrj7qGlLZ8eOEFCKi0NQ2Lat8dWCq64KLQKAhx8+sJ/kQx9q\nWO7bF0aODJeVAI4+uu3lFTlAW4KZgkq3pqDSRjU1oQXQnv8f3/se3Hdf89svuQS+/W2orAznc4fz\nzw/3o//sZw35DjkkrL/xBnzhCyGtT59w2WnXrjBGA8Ktuu9/f9vLK11YZ7VUFFSkCQWVNmrPlB5V\nVfDyy1BeHtYvueTAsRmlpSHdDEaPbki/805YvLjh/7IZlJWF+9TdYfJkeO01WLQo3Jb7+usNAy2P\nOALe9a62l1u6sM4KKtu35z6StxDvi5es5TWomNkM4EeErrxfuvsNTbaPAW4FhgNbgQvdvTJt+0Bg\nFfCgu18R06YCtwN9gYXAV907/n9UfX3b/h/v2QOnnx4CC4RWxr//e+sjcVPe+97wysQM5s8P/2dT\nt+8eemh4QeibEUlUXZ1aHumWLIG//KWzS7HfmC1bwpfBtGkdds68BRUzKwZuBs4EKoElZrbA3Vel\nZZsH3OHuvzKzM4Drgc+mbf934Ikmh/4pcBnwDCGozAAeyk8tMmtrQHnqKbjuuhBQ+vcPrYvPfjb7\ngJKNvn3DK5Ncx7ZIASmkjvru6p134OKLQ+utixgHYS6i7hBUgOOB9e7+EoCZ3Q2cTWh5pEwA5sbl\nxcCDqQ2xRTICeBiYFtMOBQa6+9Nx/Q7gk3RCUGnLPnPmNHS4n3VWsuNAsqGgIp1u82a48MJOG3l6\nUqbRyEnZty8ElHHj4JOfzM85crRhyxbGTp3aoefMZ1AZCbyWtl4JnNAkz3LgHMIlspnAADM7GHgb\n+AFwIfBPTY5ZmbZeGdMOYGZzgDkAI0aMoDzVgZGj6urqA/Z1b31UfG2t8ZOfjAdg9OjdbN9ewrZt\n796//ZBDXqSiYmObytRUUVF2rZ1sg0qmOnd3hV7n/uvWMXjZspz2GV5by/pe7fgKKCrirenT2ZvD\nqNGRDz7I+IqKtp+znfq0nqXdVn3602w+44wOOFPrqvfsYcOuXQ0duB2gszvqrwRuMrPZhMtcGwlP\nhrgcWOjuldbGa0PufgtwC8C0adO8rI0DL8rLy2m67549sHVrw3p9PcyaFb7Y7747/P3DH+ChDO2n\nqVPhtNPgy18eT58+49tUpqaGDYuTxSYkU527u4Kv80UXhTs0OtiRixaFa7jZ+tvfwt9rr4VPfCI/\nhWrBX9et4+RsR+K2RZ8+TBgyhAn5O0NOytes6fDPdT6DykYg7b4lRsW0/dx9E6Glgpn1B851921m\ndhJwqpldDvQHSsysmtCiGdXSMTtCfT2sXAmjRoXO78cfD/0lEEauH3VUw9TqBx0U/u888ECYBn/e\nvOxHl2crX615KRDbt4eA0qdPCC5Zeq2qitEHH9z28y5cGEbVXnNN7vueeWa4S6WD1VRVdcp5e5J8\nBpUlwHgzG0f44p8FfCY9g5kNA7a6ez1wNeFOMNz9grQ8s4Fp7n5VXN9hZicSOuovAjq0Z2L37tCS\n/OhH4ZhjwnxWF17YsP3rXw+f2fLy0Hp45hkYOhS+9a3Mneh9+7YvKLR66au2NgxWyUVdXZfqbNyv\nqCjzA2q6o927G269ffjhEDBOPz1z3ueeC38PPzwMbMrSPyoqGN2eeeD/+Z/DLKK5djJOnBj6HaRb\nyltQcfdaM7sCeIRwS/Gt7l5hZtcBS919AVAGXG9mTrj89aUsDn05DbcUP0QHd9Lv3t1wWeuFFw78\nkbZiRXgBfPzjIaBAw9+m+vbN8/NR9u3LPajU1+e+T0foSUHlnXdg794wBmTWrJB2882Zb+1LPfKv\no7+oJ06E73ynY88pXV5e+1TcfSHhtt/0tGvSlucD81s5xu2EIJJaXwq088lCbZeaej5lyZIwcn3l\nyhBkUjMSFxfDySe3frwkbyfOqDvdatqW2+4KVaqur7zSkPalVn5zHXFE/sojkqXO7qgvOPX1jf+f\nA7zvfeEHdDZBpKm83+bb3b6I3TsgEncBqR8D6RO7nXVW8/n79YMLLmh+u0gHUVDJkfuBEzimP00w\nV3n/fuxuQaW+vsDnqM/SG2+Ey18rV4b1Sy/VpSYpCAoqOUg9G+XNN8P6r34VOuXbM/NvXlsq1dVw\n7rnh7003NczXUsh6QlD5t38Ls42mU8e2FAgFlRyk+lNSk0medlr7x4cc0FLZvh2efLL5FkavXjBp\nUujdHzq05S/YxYvhscfC8m9/2/o1+ULQnfqImvPoo+HvsGHh1sAhQ8KDcEQKgIJKDurrQ0d8XV3o\nQ0kioBwQVC66CBYsyO4AU6bAsmXNX0OrTJt84He/C/dBZ6F006YDp03uKpJ447u6f/wj/P3Tnwr8\nGcfSEymo5CC9ldLcLcK5aBQL1q2Dl14KYxKKiuDDH84cLLZuDXm3bg3jEzZtCk/hymRj2rjQigqY\nPj2rcp2YfRU63gknhFHZ3bWzftu2MONo3756ToEUJAWVLO3cGcaopKZnGTLEoS7H6/tNpggvMsCL\nwu1kEyc2TCh28smhZdGSD3wgDOOvqGh+hHBq2o4TTghfVnv2ZFXMd2pq6NsVWwNvvhlGk44YkXi/\nykk1Ne1rAQ0ZAuPHtz/YVVeHv2PGdN/AKd2agkqW9u6Fupo6tr5RC/Rh+MC98Na2MA9LM0Pii4uc\nPqkZ7GpqwoC29O3FhFbJ/PkhoBx2WHhYype+1HA3QHPGjAlB5be/DV+0a9eG9L59w/OE3/UuWL06\npH35y82Pxs7gmYoKytoz0jpf7roLvvGN8BzmhLV7osE33mh4v5MwqdOGYom0i4JKlmprgZoaNr9S\nA/Rh+NB6iouhbvfuZvcZPKS+4cvq2ScbvnTq6kIQ2LMHli9vGPgyd254XnA2UgPdfv7zA7f98peN\n17vLXEef+Uy4LFhTk/ih/7p2LSc39/Sz1riHqdxb+CzkfLyuGNRFsqCgkoWamtCf8otbi/n29wcB\nMGxoPaV9nH214RJFbe2BN2ztn1V869YwMK2l+fJHjQod6dlegjnvvNBC2RZbS2VloXP92WdDX0vq\n/uejjw6/enO5XGTWdTvD89RxXVNV1fi5zbk64ggYNCihwtQ0TM2QT1353zlfelqdO+ESalZBxcx+\nC/wP8FCc/LFHSc2t+Njihi/ms2fsYdBAB8ItrtW7jB07G/4BzdK+x9evDwHlkEMa7sAaOTJ8Qfbr\n1xAQhg3LvlDDhsEjj7S9Ui3p1Su3snQHXanOJSUdU5auVOeO0tPq3FWDCvDfwCXAj83sPuA2d1+b\nv2J1LakWyPb443Hh/27hjOmNL8H07uVAwz9go2cfvfxy+HvSSeF5wpl09wF9ItIjZBVU3P0x4DEz\nGwScH5dfA34B3Onu+/JYxk6Xumlrx44QNAYPPHAAXkkJlPaJ6fX1lOx6O8SY6mq4776Q3tKoaAUV\nEekGsu5TiY/5vRD4LPAc8GvgFOBiwhT23V7qMtjQIQdeATSDoUNiP8bHP97wjIt0LQUVPUBeRLqB\nbPtUHgDeC/wv8HF3fz1uusfMluarcF2BNzQ+2FEdWyoDmgSVZcvCQMOiojA68rnnQstj4MBwu3Gq\n/6SlqTbUUhGRbiDblsqP3X1xpg3uPi3B8nRZ1dVQX2/0O6i+YewJhNHtmZ61fcEFcP31Detm4S6t\nTNybdMKIiBSmbL/JJpjZc+6+DcDMhgDnu/t/569oXUvqDs/BA53+/TwMdvv972HNmrBhzJjw8PlN\nm6B/f/jc5xofoKgouVtORUS6qGyDymXufnNqxd3fNrPLCHeF9QjbtoW/gwfWh0bFN7/ZMAMwhEGL\nX/5y8wdQn4mI9ADZBpViMzP30MNgZsVADxpB1NBSGdK7OkyDUlHROENrD1XRPE4i0gNkG1QeJnTK\np+YE+XxM6zFSE/4Oq34ZXolP4xs+PIyWHzoUpk5t+QAKKiLSA2QbVL5JCCRfjOuPAr9sPnv38qc/\nwde+FpZPLf5rWLjmGrjssjB/V69erU/9oMtfItIDZDv4sR74aXz1KHV1cNVVDetnbpsfFmbMCIGi\nuTu6mlJLRUR6gKx+PpvZeDObb2arzOyl1CvfhesKXn31oP2z0H/jgk1M2vp4mF4+18kHFVREpAfI\n9prMbYRWSi1wOnAHcGe+CtWVvP56XwBOP3E3N8w/IszudeaZuV/OUlARkR4g22/Gvu6+CDB3f8Xd\nvw1k98DzAvf666UAHL67gqK98cmJX/xiC3s0Q30qItIDZNtRv9fMioAXzewKYCPQP3/F6jpSLZUj\nX38cgPof/4SiY4/N/UBqqYhID5Dtz+evAgcBXwGmEiaWvDhfhepKUi2VI7cuAcBmzGjbgRRURKQH\naDWoxIGOn3b3anevdPdL3P1cd386i31nmNlaM1tvZldl2D7GzBaZ2QozKzezUWnpfzez582swsy+\nkLZPeTzm8/H1rhzrnJNdu0JjbnjdG9QPGNT4bi+zcFkr25eISDfX6uUvd68zs1NyPXAMRjcDZwKV\nwBIzW+Duq9KyzQPucPdfmdkZwPWEqfVfB05y971m1h9YGffdFPe7wN07ZHbk2n2hhVFCDXXvOoTe\n6Q2OoUNpPLukiEjPlm2fynNmtgC4D9iVSnT337awz/HAend/CcDM7gbOBtKDygRgblxeDDwYj5v+\nWMU+ZH+ZLnG1dSGK9GYf9cObPB+9d+9OKJGISNeVbVApBaqAM9LSHGgpqIwEXktbrwROaJJnOXAO\n8CNgJjDAzA529yozGw38ETgS+EZaKwXgNjOrA+4Hvpuakyydmc0B5gCMGDGC8vLyViuZyd69xwGh\npVLVfyjrUnN+mYVp77uh6urqNr9fhUp17hl6Wp07o77Zjqi/JE/nvxK4ycxmA08Q7iqri+d8DTjW\nzA4DHjSz+e7+JuHS10YzG0AIKp8ljJtpWuZbgFsApk2b5mVlZW0qYH19aJiVUMPAdx9F2cSJUFoa\npmXp3z1vgCsvL6et71ehUp17hp5W586ob7ZPfryN0DJpxN3/Twu7bQTSh52Pimnp+28itFSIfSfn\npp7Zkp7HzFYCpwLz3X1jTN9pZncRLrMdEFSSUlsbrrz1Zh91h40OHe5Dh+brdCIiBS3bvoo/EC5F\n/RFYBAwEqlvZZwkw3szGmVkJMAtYkJ7BzIbF8S8AVwO3xvRRZtY3Lg8BTgHWmlkvMxsW03sDHwNW\nZlmHNqmtTeuoH3O47uISEWlBtpe/7k9fN7PfAE+2sk9tHCj5CFAM3OruFWZ2HbDU3RcAZcD1ZuaE\ny19firsfDfwgphswz91fMLN+wCMxoBQDjwG/yK6qbZMKKr3ZR/2YcQoqIiItaOuD0ccDrY4PcfeF\nwMImadekLc8H5mfY71HggGHr7r6LMPiyw6RuKe5dUkTd8EMUVEREWpBtn8pOGvepvEF4xkq3Vxtv\nbi46fAz1xRrEKCLSkmwvfw3Id0G6qrp4+YtTTw0zrSioiIg0K9vnqcw0s0Fp64PN7JP5K1bX4A41\n9WGAo71/WkhUUBERaVa235DXuvv21Eq87ffa/BSp66itDX+LqaV46CAM18SQIiItyDaoZMrX1k7+\ngrFvX/hbQg3Wv78uf4mItCLbwLDUzH5ImCASwq2/y/JTpK6jJnbSl1BD/8MGwsRDO7dAIiJdXLY/\nu78M1AD3AHcDe2gYU9JtpVoqvdkHI0d2bmFERApAtnd/7QIOeB5Kd1ezuxboRQk1MOSwzi6OiEiX\nl+3dX4+a2eC09SFm9kj+itU11GzbDUBvq1UHvYhIFrK9/DUsfaJHd3+bLEbUF7p92+IMxUV1nVwS\nEZHCkG1QqTezd6dWzGwsGWYt7m5SLZWSYgUVEZFsZHv317eAJ83sccIEj6cSH4DVne2//FVc38kl\nEREpDNl21D9sZtMIgeQ5wmN/38lnwbqCfTtCFUt6KaiIiGQj2wklLwW+SnjQ1vPAicDfaPx44W6n\nZsceAHr37vZX+kREEpFtn8pXgfcDr7j76cAUYFvLuxS+fbvDQJWSXgoqIiLZyDao7HH3PQBm1sfd\n1wDvzV+xuoaa+CjhkqLaTi6JiEhhyLajvjKOU3kQeNTM3gZeyV+xuoZUUOmtW4pFRLKSbUf9zLj4\nbTNbDAwCHs5bqbqIfXVqqYiI5CLnmYbd/fF8FKQrUktFRCQ3mse9BR7754tMtxSLiGRDQUVERBKj\noCIiIolRUBERkcQoqIiISGIUVEREJDEKKiIikhgFFRERSUxeg4qZzTCztWa23swOeMa9mY0xs0Vm\ntsLMys1sVFr6383seTOrMLMvpO0z1cxeiMf8sZme8ysi0lXkLaiYWTFwM/BhYAJwvplNaJJtHnCH\nux8LXAdcH9NfB05y98nACcBVZnZY3PZT4DJgfHzNyFcdREQkN/lsqRwPrHf3l9y9BrgbOLtJngnA\nn+Py4tR2d69x970xvU+qnGZ2KDDQ3Z92dwfuAD6ZxzqIiEgOcp77KwcjgdfS1isJrY50y4FzgB8B\nM4EBZnawu1eZ2Wjgj8CRwDfcfVN8+mRlk2OOzHRyM5tDfOTxiBEjKC8vz7kClRs3A7Bnz5427V+o\nqqure1R9QXXuKXpanTujvvkMKtm4ErjJzGYDTwAbgToAd38NODZe9nrQzObncmB3vwW4BWDatGle\nVlaWc+E23fcUAKWlpZSVTc95/0JVXl5OW96vQqY69ww9rc6dUd98BpWNwOi09VExbT9330RoqWBm\n/YFz3X1b0zxmthI4FXgqHqfZY4qISOfJZ5/KEmC8mY0zsxJgFrAgPYOZDTOzVBmuBm6N6aPMrG9c\nHgKcAqx199eBHWZ2Yrzr6yLgd3msg4iI5CBvQcXda4ErgEeA1cC97l5hZteZ2SditjJgrZmtA0YA\n34vpRwPPmNly4HFgnru/ELddDvwSWA/8A3goX3UQEZHc5LVPxd0XAgubpF2TtjwfOKCvxN0fBY5t\n5phLgUnJllRERJKgEfUiIpIYBRUREUmMgoqIiCRGQUVERBKjoCIiIolRUBERkcQoqIiISGIUVERE\nJDEKKiIikhgFFRERSYyCioiIJEZBRUREEqOgIiIiiVFQERGRxCioiIhIYhRUREQkMQoqIiKSGAUV\nERFJjIKKiIgkRkFFREQSo6AiIiKJUVAREZHEKKiIiEhiFFSyYp1dABGRgqCg0gL3zi6BiEhhUVDJ\ngqHoIiKSDQUVERFJTF6DipnNMLO1ZrbezK7KsH2MmS0ysxVmVm5mo2L6ZDP7m5lVxG2fTtvndjN7\n2cyej6/J+ayDiIhkL29BxcyKgZuBDwMTgPPNbEKTbPOAO9z9WOA64PqYvhu4yN0nAjOAG81scNp+\n33D3yfH1fL7qICIiuemVx2MfD6x395cAzOxu4GxgVVqeCcDcuLwYeBDA3delMrj7JjPbDAwHtuWx\nvCJSYPbt20dlZSV79uzJKv+gQYNYvXp1nkvVdWRb39LSUkaNGkXv3r3bfc58BpWRwGtp65XACU3y\nLAfOAX4EzAQGmNnB7l6VymBmxwMlwD/S9vuemV0DLAKucve9eSi/iHRxlZWVDBgwgLFjx2LW+q3/\nO3fuZMCAAR1Qsq4hm/q6O1VVVVRWVjJu3Lh2nzOfQSUbVwI3mdls4AlgI1CX2mhmhwL/C1zs7vUx\n+WrgDUKguQX4JuHSWSNmNgeYAzBixAjKy8tzLtzGjZsB2LNnT5v2L1TV1dU9qr6gOheqQYMGcfDB\nB1NdXZ1V/rq6Onbu3JnnUnVuSoYcAAATaElEQVQd2da3pKSEbdu2JfJ5yGdQ2QiMTlsfFdP2c/dN\nhJYKZtYfONfdt8X1gcAfgW+5+9Np+7weF/ea2W2EwHQAd7+FEHSYNm2al5WV5V6Be58CQtOwrGx6\nzvsXqvLyctryfhUy1bkwrV69moEDB2adXy2V5pWWljJlypR2nzOfd38tAcab2TgzKwFmAQvSM5jZ\nMDNLleFq4NaYXgI8QOjEn99kn0PjXwM+CazMYx1ERCQHeQsq7l4LXAE8AqwG7nX3CjO7zsw+EbOV\nAWvNbB0wAvheTD8POA2YneHW4V+b2QvAC8Aw4Lv5qoOISEcbO3YsW7Zs6exitFle+1TcfSGwsEna\nNWnL84H5Gfa7E7izmWOekXAxRUQS4e64O0VFPXdcec+tuYh0L2atvgYMHJhVvkavVmzYsIH3vve9\nXHTRRUyaNInPfe5zTJs2jYkTJ3Lttdfuzzd27FiuvfZajjvuOI455hjWrFkDQFVVFWeddRYTJ07k\n0ksvxdMmHfzhD3/IpEmTmDRpEjfeeOP+8x111FHMnj2b97znPVxwwQU89thjTJ8+nfHjx/Pss88m\n/MbmRkFFRKSdXnzxRS6//HIqKir4wQ9+wNKlS1mxYgWPP/44K1as2J9v2LBh/P3vf+eLX/wi8+bN\nA+A73/kOp5xyChUVFcycOZNXX30VgGXLlnHbbbfxzDPP8PTTT/OLX/yC5557DoD169fzL//yL6xZ\ns4Y1a9Zw11138eSTTzJv3jy+//3vd/wbkEZBRUS6B/dWXzt37MgqX6NXFsaMGcOJJ54IwL333stx\nxx3HlClTqKioYNWqhvHe55xzDgBTp05lw4YNADzxxBNceOGFAHz0ox9lyJAhADz55JPMnDmTfv36\n0b9/f8455xz+8pe/ADBu3DiOOeYYioqKmDhxIh/84AcxM4455pj9x+0snT1ORUSk4PXr1w+Al19+\nmXnz5rFkyRKGDBnC7NmzG43279OnDwDFxcXU1ta2+Xyp4wAUFRXtXy8qKmrXcZOgloqISEJ27NhB\nv379GDRoEG+++SYPPfRQq/ucdtpp3HXXXQA89NBDvP322wCceuqpPPjgg+zevZtdu3bxwAMPcOqp\np+a1/ElQS0VEJCHve9/7mDJlCkcddRSjR49m+vTWB01fe+21nH/++UycOJGTTz6Zd7/73QAcd9xx\nzJ49m+OPPx6ASy+9lClTpnT65a3WKKiIiLTD2LFjWbmyYQz27bffnjFfejCYNm3a/ilRDj74YP70\npz9l3Gfu3LnMnTu3UVpL52u6rTPo8peIiCRGQUVERBKjoCIiIolRUBERkcQoqIiISGIUVEREJDEK\nKiIiXUD//v1bzXPjjTeye/fu/esf+chH2LZtWz6LlTMFFRGRAtE0qCxcuJDBgwd3YokOpKAiIt1C\nNrPYDxw4IOmZ7wG48847Of7445k8eTKf//znufnmm/nGN76xf/vtt9/OFVdcAWSezj5deXk5H/vY\nx/avX3HFFdx+++38+Mc/ZtOmTZx++umcfvrpQOMHemU67iuvvMLRRx/NZZddxsSJEznrrLN45513\n2vT+ZktBRUSkHVavXs0999zDU089xfPPP09xcTH9+/fngQce2J/nnnvuYdasWS1OZ9+ar3zlKxx2\n2GEsXryYxYsXN9rW0nFffPFFvvSlL1FRUcHgwYO5//77k6t8BgoqItItZDOL/Y4dOxOf+X7RokUs\nW7aM97///UyePJlFixbx8ssvc/jhh/P0009TVVXFmjVrmD59eovT2bdHa9PkT54cnsaePuV+vmju\nLxGRdnB3Lr74Yq6//vpG6bfeeiv33nsvRx11FDNnzsSyvJbWq1cv6uvr96+nT53fFunT5BcXF+vy\nl4hIV/bBD36Q+fPns3nzZgC2bt3KK6+8wsyZM/nd737Hb37zG2bNmgVkN539mDFjWLVqFXv37mXb\ntm0sWrRo/7YBAwawc+fOA8rQlabJV0tFRKQdJkyYwHe/+13OOuss6uvr6d27NzfffDNjxozh6KOP\nZtWqVfunr29uOvt0o0eP5rzzzmPSpEmMGzeu0fY5c+YwY8aM/X0rKc0dt1NmLHb3bv+aOnWqt8Wd\nX3zSwf0zY55s0/6FavHixZ1dhA6nOhemVatW5ZR/x44deSpJ15RLfTO9l8BSz/H7Vpe/REQkMQoq\nIiKSGAUVESlons19v9KiJN9DBRURKVilpaVUVVUpsLSDu1NVVUVpaWkix9PdXyJSsEaNGkVlZSVv\nvfVWVvn37NmT2JdnIci2vqWlpYwaNSqRcyqoiEjB6t27N+PGjcs6f3l5+QG38HZnnVHfvF7+MrMZ\nZrbWzNab2VUZto8xs0VmtsLMys1sVEyfbGZ/M7OKuO3TafuMM7Nn4jHvMbOSfNZBRESyl7egYmbF\nwM3Ah4EJwPlmNqFJtnnAHe5+LHAdkJrnYDdwkbtPBGYAN5pZan7n/wD+n7sfCbwNfC5fdRARkdzk\ns6VyPLDe3V9y9xrgbuDsJnkmAH+Oy4tT2919nbu/GJc3AZuB4RYmzzkDmB/3+RXwyTzWQUREcpDP\nPpWRwGtp65XACU3yLAfOAX4EzAQGmNnB7l6VymBmxwMlwD+Ag4Ft7l6bdsyRmU5uZnOAOXG12szW\ntrEew+56hS13ZflchW5iGLClswvRwVTnnqGn1bm99R2T6w6d3VF/JXCTmc0GngA2AnWpjWZ2KPC/\nwMXuXp/tLJ8A7n4LcEt7C2hmS919WnuPU0hU555Bde7+OqO++QwqG4HRaeujYtp+8dLWOQBm1h84\n1923xfWBwB+Bb7n703GXKmCwmfWKrZUDjikiIp0nn30qS4Dx8W6tEmAWsCA9g5kNM7NUGa4Gbo3p\nJcADhE78VP8JcYKzxcCnYtLFwO/yWAcREclB3oJKbElcATwCrAbudfcKM7vOzD4Rs5UBa81sHTAC\n+F5MPw84DZhtZs/H1+S47ZvAXDNbT+hj+Z981SFq9yW0AqQ69wyqc/fX4fU1TW8gIiJJ0dxfIiKS\nGAUVERFJjIJKC1qbZqYrMLNbzWyzma1MSxtqZo+a2Yvx75CYbmb241ifFWZ2XNo+F8f8L5rZxWnp\nU83shbjPj+MA1DadI8E6jzazxWa2Kk7l89XuXm8zKzWzZ81seazzd2L6OMswbZGZ9Ynr6+P2sWnH\nujqmrzWzD6WlZ/y8t+UcCda72MyeM7M/9JD6boifu+fNbGlMK6zPda6PiuwpL6CYMODycMLgy+XA\nhM4uV4ZyngYcB6xMS/tP4Kq4fBXwH3H5I8BDgAEnAs/E9KHAS/HvkLg8JG57Nua1uO+H23KOhOt8\nKHBcXB4ArCPMztBt6x2P2z8u9waeiee5F5gV038GfDEuXw78LC7PAu6JyxPiZ7kPMC5+xotb+rzn\neo6E6z0XuAv4Q1vKUoD13QAMa5JWUJ/rTv9S7Kov4CTgkbT1q4GrO7tczZR1LI2Dylrg0Lh8KLA2\nLv8cOL9pPuB84Odp6T+PaYcCa9LS9+fL9Rx5rv/vgDN7Sr2Bg4C/E2ao2AL0avqZJdx1eVJc7hXz\nWdPPcSpfc5/3uE9O50iwnqOARYSpmf7QlrIUUn3jcTdwYFApqM+1Ln81L9M0MxmnhOmCRrj763H5\nDcLt2tB8nVpKr8yQ3pZz5EW8BDGF8Mu9W9c7Xgp6njAX3qOEX9rNTVu0vzxx+3bCLfi5vhctTY3U\n3DmSciPwr0B9XG9LWQqpvgAO/MnMllmYagoK7HPd2dO0SJ65u5tZXu8b74hzZGJhFob7ga+5+w5L\nm8anO9bb3euAyRZm7H4AOKqjzt3RzOxjwGZ3X2ZmZZ1dng50irtvNLN3AY+a2Zr0jYXwuVZLpXmt\nTjPThb1pYd601Pxpm2N6c3VqKX1UhvS2nCNRZtabEFB+7e6/bWOZCq7eAB6mMlpMuDQz2MxSPw7T\nz7m/PHH7IMI0R7m+F/unRsrhHEmYDnzCzDYQZjg/gzDxbHetLwDuvjH+3Uz44XA8Bfa5VlBpXqvT\nzHRhCwhT2EDjqWwWABfFOzpOBLbHJu8jwFlmNiTe9XEW4Try68AOMzsx3iVyUZNj5XKOxMSy/A+w\n2t1/2BPqbWbDYwsFM+tL6ENaTfPTFqWX81PAnz1cFF8AzIp3Mo0DxhM6bzN+3uM+uZ6j3dz9ancf\n5e5jY1n+7O4XdNf6AphZPzMbkFomfB5XUmif6yQ7mbrbi3DnwzrCtetvdXZ5minjb4DXgX2E652f\nI1znXQS8CDwGDI15jfDgtH8ALwDT0o7zf4D18XVJWvq0+MH+B3ATDbMw5HyOBOt8CuHa8wrg+fj6\nSHeuN3As8Fys80rgmph+OOFLcj1wH9AnppfG9fVx++Fpx/pWLOda4t0/LX3e23KOhOteRsPdX922\nvvG8y+OrIlWmQvtca5oWERFJjC5/iYhIYhRUREQkMQoqIiKSGAUVERFJjIKKiIgkRkFFsmJmg83s\n8izyjTWzz2SZb2Uz6a3u38wx/5pFnl+a2YS2HL/JcRq9H2Z2mJnNb2mfrsjMyszs5Ba2f9LMrunI\nMrXEzMrNbFoL2+eZ2RkdWSZpTEFFsjWYMEtra8YCbQoKre2fNso5I3dv9ssxLc+l7r6qbUVrpNH7\n4e6b3P1TLeTvqsqAlt63fwX+u2OKkoifEGbZlU6ioCLZugE4wsJzHv4rjrD9LzNbaeH5DJ9Oy3dq\nzPf12PL4i5n9Pb5a++Jvuv9sM1tgZn8GFplZfzNbFI/1gpmdndrRzKrj37L4i3a+ma0xs1/HEcSN\nfumaWbWZfc/CM0qeNrMRMf2IuP6CmX03ddxW3o/9La9Y5gctPJdig5ldYWZzLTwX5GkzG5p2noct\nTB74FzM7YC4vM/tAPMfzcf8BsX5PmNkfLTwP5GdmVhTzn2Vmf4vvz30W5kdLPafjO2nv21EWJuP8\nAvD1ePxTm5z7PcBed98S1/85/nsvN7MnYlpxrP8SC8/b+Hza/t+M51puZjfEtMnxPVhhZg9Yw3M7\nys3sPyw8M2Zdqixm1tfM7jaz1Wb2ANA37by3p33+vg7g7q8AB5vZIa18ziRf8jECVq/u9+LA6fXP\nJcyUW0yY0fRVwpTZZcTRzzHfQUBpXB4PLM10vLT8TfefTZgpIDXCtxcwMC4PI4wYTg3irU47xnbC\nPEVFwN8IE/UBlBNHBRNG5X88Lv8n8G9x+Q/E6b4JX7rVWbwf+9djmdcTnvUyPJblC3Hb/yNMgAlh\nBPP4uHwCYdqPpuf5PTA9LveP9S8D9hBGYBfHf4dPxffjCaBfzP9NGkbebwC+HJcvB34Zl78NXNnM\nv/klwA/S1l8ARsblwfHvnLT3rQ+wlPDckg8DfwUOittS/34rgA/E5euAG9P+XX4Qlz8CPBaX5wK3\nxuVjgVrCqPCpwKNpZRuctvwL4NzO/j/TU19qqUhbnQL8xt3r3P1N4HHg/Rny9QZ+YWYvEKa4aEt/\nxqPuvjUuG/B9M1tBmE5iJA3TdKd71t0r3b2eMI3L2Ax5aggBBGBZWp6TYlkhPCCqLRa7+053f4sQ\nVH4f018AxsYWxMnAfRams/85ISg39RTwQzP7CuGLMzUl+7Pu/pKHmYt/Q/j3OJHw/j4Vj3kxMCbt\nWKmJN9Pr2pJDgbealOV2M7uMEMwgzCt1UTzfM4TpPsYD/wTc5u67Adx9q5kNinV4PO77K8JD5loq\n32nAnfEYKwhBCcKDpw43s5+Y2QxgR9pxNgOHZVE/yQNNfS/59nXgTeB9hFbDnjYcY1fa8gWEX/9T\n3X2fhVlsSzPsszdtuY7Mn/V9Hn/atpCnrdLPX5+2Xh/PU0R4bsfklg7i7jeY2R8Jv96fsobH4Tad\nX8kJAfdRdz+/lTJlW9d3CDPxpsryBTM7AfgosMzMpsZzftndH0nfMa2cuci6fO7+tpm9D/gQoTV5\nHmG+Kwifh3facH5JgFoqkq2dhMs5KX8BPh2vbQ8n/KJ8NkO+QcDrscXwWRp+4WZ7nqYGEZ6zsc/M\nTqfxL/GkPE24vAdh9tpMWitni9x9B/Cymf0z7H8W+Pua5jOzI9z9BXf/D8LMuql+l+MtzLBbBHwa\neDKWe7qZHRn37Rf7RVrSUj1WA0c2Kcsz7n4NoQUzmjAj7hctPIoAM3uPhRl2HwUuMbODYvpQd98O\nvJ3Wd/NZQgu3JU8Qb9wws0mES2CY2TCgyN3vB/6N8EjtlPcQJk2UTqCgIllx9yrCL+WVZvZfhGc9\nrCDMqPpn4F/d/Y2YVhc7Z79OuHPoYjNbTvhC3JX5DPs13b+pXwPT4uW0i4A1GfK019eAufES25GE\ny1eNZHg/2uIC4HPxvakAzs6Q52vxHCsIM1E/FNOXEGaZXQ28DDwQL7XNBn4T8/+N1h/k9XtgZqaO\nesIX+hSz/U8/+6/YKb6S0F+yHPglsAr4e0z/OeFRvA8Tpk1fGi+NXRmPcXE8zgpgMqFfpSU/Bfqb\n2eqYd1lMHwmUx2PfSXgUcOo5O0cS+nakE2iWYpEm4q/rd9zdzWwWodM+0xd+p7DwJMQr3f1jHXCu\nHwG/d/fH8n2uJJjZTOA4d/+/nV2Wnkp9KiIHmgrcFH+hb6PhWn1P9H3CnWmFohfwg84uRE+mloqI\niCRGfSoiIpIYBRUREUmMgoqIiCRGQUVERBKjoCIiIon5/4peRHBDocBcAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEKCAYAAADaa8itAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de3hU1b3/8fcnIRDuICAqQcAjVsAL\ntyLeeiK2Hms9WrBara3ir0rV2pu1p/p4jh7txZ5T6rEePbVW8VLrrViVKtYqElErCiq3cFG8oMEL\ngiKEe5Lv74+1h0zCJJmZ7Ekyyff1PPNk77XX3nutmcn+ztpr77VlZjjnnHNxKGjtAjjnnGs/PKg4\n55yLjQcV55xzsfGg4pxzLjYeVJxzzsXGg4pzzrnY5DSoSDpR0ipJqyVdnmL5EElzJC2RVCapJGlZ\ntaRF0WtWUvowSS9F23xAUudc1sE551z6lKv7VCQVAq8DXwIqgAXAWWa2PCnPn4HHzOwuSZOA88zs\nW9GySjPrkWK7DwJ/MbP7Jd0CLDaz3+WkEs455zKSy5bKBGC1mb1lZjuB+4FT6+UZCTwTTc9NsbwO\nSQImATOjpLuAr8ZWYuecc83SKYfbHgS8lzRfARxRL89iYArwW2Ay0FNSPzPbABRLWghUAb8ys0eA\nfsBGM6tK2uagVDuXNA2YBtC1a9dxgwcPzqoSNTU1FBR0rK4nr3PH4HVu/5pb39dff329mQ3IZJ1c\nBpV0XAbcJGkqMA9YC1RHy4aY2VpJBwDPSFoKfJbuhs3sVuBWgPHjx9vChQuzKmBZWRmlpaVZrZuv\nvM4dg9e5/WtufSWtyXSdXAaVtUBy86AkStvNzN4ntFSQ1AM4zcw2RsvWRn/fklQGjAEeAvpI6hS1\nVvbYpnPOudaTy3bgAmB4dLVWZ+BMYFZyBkn9JSXKcAUwI0rvK6lLIg9wNLDcwlUFc4GvReucCzya\nwzo455zLQM6CStSSuAR4ElgBPGhm5ZKulXRKlK0UWCXpdWAg8IsofQSwUNJiQhD5VdJVYz8FLpW0\nmtDHcnuu6uCccy4zOe1TMbPZwOx6aVclTc+k9kqu5Dz/AA5tYJtvEa4sc84518Z0nMsgnHPO5ZwH\nFeecc7HxoOKccy42HlScc87FxoOKc8652HhQcc45FxsPKs4552LjQcU551xsPKg455yLjQcV55xz\nsfGg4pxzLjYeVJxzzsXGg4pzzrnYeFBxzjkXGw8qzjnnYuNBxTnnXGw8qDjnnIuNBxXnnHOx8aDi\nnHMuNh5UnHPOxcaDinPOudh4UHHOORcbDyrOOedi40HFOedcbDyoOOeci40HFeecc7HxoOKccy42\nOQ0qkk6UtErSakmXp1g+RNIcSUsklUkqqbe8l6QKSTclpZVF21wUvfbOZR2cc86lL2dBRVIhcDPw\nZWAkcJakkfWyTQfuNrPDgGuB6+ot/xkwL8Xmzzaz0dFrXcxFd845l6VctlQmAKvN7C0z2wncD5xa\nL89I4Jloem7ycknjgIHA33NYRuecczHKZVAZBLyXNF8RpSVbDEyJpicDPSX1k1QA/Aa4rIFt3xGd\n+voPSYqz0M4557LXqZX3fxlwk6SphNNca4Fq4GJgtplVpIgZZ5vZWkk9gYeAbwF3188kaRowDWDg\nwIGUlZVlVcDKysqs181XXueOwevc/rVKfc0sJy/gSODJpPkrgCsayd8DqIim/wS8C7wDrAc2Ab9K\nsc5U4KamyjJu3DjL1ty5c7NeN195nTsGr3P719z6Agstw2N/LlsqC4DhkoYRWiBnAt9IziCpP/CJ\nmdVEQWcGgJmdnZRnKjDezC6X1AnoY2brJRUBJwNP57AOzjnnMpCzPhUzqwIuAZ4EVgAPmlm5pGsl\nnRJlKwVWSXqd0Cn/iyY22wV4UtISYBEhWP0hF+V3zjmXuZz2qZjZbGB2vbSrkqZnAjOb2MadwJ3R\n9BZgXNzldM45Fw+/o94551xsPKg455yLjQcV55xzsfGg4pxzLjatffOjczmxYweEW5nSYwbbt+eu\nPG1RvtS5c2co8J+/QH58Xh5UXLu0aRPs2pV+/qoq+OST3JWnLcqXOu+1FxQXt3YpsrNtW/iBE4ea\nmsyDSk1NPPvOhAcV1y5l0kpxbVs+f5abNkF1dWuXomV5o9K1S63xC83lRj4HlXwue7a8pZKHPvts\nz18/nTtDjx6tU562qCP+M7dX+fxZ5nPZs+VBJQ9t27bnL3EzDyrJOuI/s2t7OuL30E9/5aFUp3Y6\n4pe3If5etC/5+nnma7mby4NKnmmo08/7EGp11H/m9ipfP898LXdzeVDJMw0FDw8qtTrqP3N7la+f\nZ76Wu7k8qOSZhoJHR/0Cp+LvRfuSr59nvpa7uTyo5JnGgkpH/RLX56229iVfv9f5Wu7m8qCSZxq7\nkaqjfonr8/ehfcnXzzNfy91cHlTyTGNDj/gv9KCj/jO3V/n6eeZruZvLg0qeaSyodNQvcX3+PrQv\n+fp55mu5m8tvfmyjtm+HnTv3TK+qCn9TfWErK6GwsPHtpvNFr64Od+2nQ0ovX0tKvEdNqayEO+4I\nfz/+eBj9+4fWXqJ/qqkXwCmnwMSJuauLy9+Dc9zl3r4dli/P7IzEmjW9GDkS9tkn3rI0xoNKG7V1\na8Mjkt5+O1xzTd3+lcJCuPJK+M53Uq9TVQU/+Qk89FA6A9yVpl3O006DG29MO3uLmD8fZs5sePj7\nvfcOow8sWADz5iVSh2S1r7/+FX74w7YZXJvywQeDeOml9PIOHAgnndQ69fSgEnzvezB7dqZrjaWo\nCC68MN6yNMaDShvV0K/ttWvhF7/YMzBUV8P118PSpeHZE/WfP7F4Mbz+evzl/MtfYNo06Ns3/m1n\no6YGvvtd+PDD9PIXFYV/1k8/fYuBAw9ACgfOgoLaA2j9tMTr/vth2TK46qrc1Se3hmeUe9IkGD8+\nR0VpxL77wg9+kH+BO86gUlUFzz4bpseMSf+92LbtMwYO7B1fQdLgQaUNMms4qMyYEX6B/+u/wi23\n1Kafdlr4hf7ww41v+8c/hksvbTxPeXkZo0aVNlnOqVPhqafgX/6lyawtbujQ0IKofzqwpgYqKmrf\n3wkT4AtfgPLydxk16oCM9lFaCnfdlf7ptrbmk08q2GuvkibzLVsWWnXPPBNerWHEiLb5PWvMK6/A\no4+G/9fmXkSzaRNs2QL77w+PPZb+eitXvsakSaXN23mGPKi0sI8/zv75CosWwW23hemLLoJOSZ/e\njBnw/POhI7+6uu6vpJ07Yfp0WL8+9AHE5cIL4c03297T6IqKwqnAk05qOm+iVSfVfT9TKSyE3r1r\nfyX26wfDhjW/vK2lvHw1o0Y1HVTM4L774N13W6BQ9SxcCC++GA6khx/e/O1VVaXfim2OXbvg9NNh\n3bp4t5sP/XceVFpYVVXTzeJ33oHf/Q6+/vW6B63bbw/rf/Ob4Vdy1661y/beO/yaa8hpp8Fbb8Eh\nh6R38ExnxONJk+C555rO15Z16wa9eoX3ZO+9W7s0bZME3/hG6+z7qadCULn9dpg1q/nb27nzCDp3\nbv52mrJrVwgoJSXh/7WpC2jSUVQEX/1q87eTax5UWlg651lnzIB77gmvVC64IPNndu+zD3TpEoJF\nU/9UBQXhQNuUmppwQUE+a86zz/PtHH8+OuKI8DjhTz6Jq6XUteksMbr4Yjj33BbdZavzoNKC0j2v\numRJ7XSfPnWXTZoEBx6Y+QEtcfAsKspsvaa2KeXv1TnQvKDSnHVdenr1gpdeCqeN4/DGG/MZPrxl\nziF16dKyl/K2FR5UWlBjB9/kmxrXrAl/X3wxdMylkukBraAgNMHj/nXdkYNKYn0fySC3unWDIdld\n8b2HysrtsW3LpeZBpQU1dPC55hq49da6aV27hvOxDckmqDTVl5KNfD+oNjeo+Ckw5+rKaQNe0omS\nVklaLenyFMuHSJojaYmkMkkl9Zb3klQh6aaktHGSlkbbvFHKn3/rVAff6upwvwOEg37idfrpjR/w\nsjn9laugks/iaKk452rlrKUiqRC4GfgSUAEskDTLzJYnZZsO3G1md0maBFwHfCtp+c+AedT1O+AC\n4CVgNnAi8ERuapHarl3Z9U2kOk20fHm4Bn3//cPprnQkbr7LRDqXzGYj3w+qzf1Jku/1dy5uufyX\nmACsNrO3zGwncD9war08I4HE7VRzk5dLGgcMBP6elLYv0MvM5puZAXcDLX6RXWODOjamfktl3Tr4\n4x/D9NFHp7+dbA9kcXbSJ+T7QdVbKs7FK5d9KoOA95LmK4Aj6uVZDEwBfgtMBnpK6gd8CvwG+Cbw\nxXrbrKi3zUGpdi5pGjANYODAgZSVlWVVicrKyj3Wra7O7rrzmhrYsKGITZuKePXVvvz+9/9EdXU4\nKh111CuUl29OazsSrFiR+f7TlarODcn3h4Mlhq7JpM7Jsq5/TQ208vu2ffsWVpa30i3yraSj1XnL\n9i1ZH/uy1dod9ZcBN0maSjjNtRaoBi4GZptZRbZdJmZ2K3ArwPjx4620tDSr7ZSVlVF/3Y8/hgED\nUufftSuczkrl9tvhiivqtljGjIHjj4cpU8bVyVtYmPrO++7dw9UwuWh1JKSqc3uXkzp/8knqiGOW\negjqFlZWXk7pqINbuxgtqqPVuWzlyhb/X85lUFkLDE6aL4nSdjOz9wktFST1AE4zs42SjgSOlXQx\n0APoLKmS0KIpaWybLSFxV3yqeLdtWxjrJ5Xp00NAGTgwDPFx4YXhTvdUuncPx536x6SePf2US16o\nqWl749c41wJyGVQWAMMlDSMc+M8E6gz2IKk/8ImZ1QBXADMAzOzspDxTgfFmdnk0v0nSREJH/TnA\n/+awDrtt314bLMzC80a0bSvs2kWPHrWnw3ZuEBQU73Hb+tatoYVTVBTGM2oqMBQUhDuJXZ5qaoC3\nDRtavbXSef16+OCDVi1DS+tode788cdhJMru3VtsnzkLKmZWJekS4EmgEJhhZuWSrgUWmtkswoM7\nrpNkhNNf301j0xcDdxLGW3iCFrrya8eO8NkkbN0KfLoDduyga00NhVEMqaksgOKCPYLKe1HvUklJ\nei2N/LlQ2qXU2NDFM2bAf/xHy5WlAUe1dgFaQUer81EQBhJswQeq5LRPxcxmEy77TU67Kml6JjCz\niW3cSQgiifmFwCFxljNr0bmp5D6SmhpSnkdPBJWG7pCvz09x5bnGWiqJB2P06QPFxS1TnhR27NpF\nl1x2zrVBHa3OO3btoku3bi26z9buqM8bKa/wiRKTl5nVTZg2DR5/vHb54ORepkZ4SyXPNTbMQGIc\nngceCMNGt5IXy8spHTWq1fbfGjpanV9cuZLSSZNadJ8eVNLUWFCpMQFWe3mpGWvXwhtv1A0oXbvC\nl76U3v48qOS5hoJKTU3tcLtDh7ZYcZxrKR5U0pQyqEQHjsSyxN+XFhQwJWm46ylT4H8zvJzAg0oe\nMwtPU0v1mMRdu0IHXb9+6T20xrk840ElTY22VKIfpYm/f5sT3tZ99gkd89n0keVNn4oZ/O1v8T/i\nLlP77x8eZp6lbu++CytXxlOW++8Po4Q25tBD49mXc22MB5U0pdOnkvg7f2HoCPyf/wnPP89G3rRU\nnn46vef2tnETcrHRH/8YDk5xo11BAUzIyR6da3UeVNK0R1BJSkhuqXz6mVi2spCiIhg/Pvv9xR5U\n1q+ve010fYMGZTfi5JNPhr/jx8PIkdmVrbmqqqC8vFk3G27dupVucV4lc+KJcOml8W3PuTzhQSVN\niRhSVQXPPw99e9Vw+H4hLRFUzOCFBZ2pqRFHHBGGU8lGxgFlxw64/nr49NM9l33uc+Hh66ec0vg2\njj02XOqayc7NQksF4Lrr4ItfbDx/G/Zy3MO0fPhhfj9oxrkseVDJ0L33hvG7oJArv9+di8/dQnWN\n2Lot3CA976UuQDhGZ6vOcX39+qbvzr7tNvj3f296w/37h0vQ6lu3Dp57LrRWCguZuGNHeBZqU2pq\n4P33oW9fGD26dR9Y38LX4jfJA4rroDyopCnRUlm2rDbt3j8X8b3j3sKAzUWdqRo4iHnzw530mfSl\nFBRA796187uDyk9/Cv/93+lv6LzzYL/9aueXLoVZs2p38vTTqUfC/OMf4fLLdw9fkfHteFdeGSJq\naw47UlSU21E2M5HPwzY710weVNJkVdWwq5r31nQi8Riatz8opnDyKfRnAwC/40Le43f05RMm7liK\nVU9AW7dg3bo3OlZ+z+7Qpf7iz7bBLbeE6QEDmj4tNWZMOAWVvJ8tW8Jd2+vWwXHHhZZIKt/+Npx9\n9u6D4YsvvsiRRx7Z+P6SpWr9tLSqqrYVVOoN09MmSflRzjh1tDq3whU/aQUVSX8BbgeeiAZ/7HCs\ncgts2cq77/QHCtirYCOf1PRhAOs5ufhpHuzyTW767BIAfsBv6feXN+EH34SKinAb/R13wIgRqTe+\nOXole+aZMIb+uHFhBMps9O8Pd92V8Wo73nwz/Vv/3Z4KCsJ739Z16pQf5YxTR6tzKwSVdO+G+D/C\nCMNvSPqVpM/lsExtklVV89JrRbxTEeLwz2uuoDcbAXhs+xd5Yno5bxeHoPFDboA//SkEFAgDf11+\neWY7TAwWNnZsLOV3zrmWkFZQMbOno+HoxwLvAE9L+oek8yS1kXMOuWMG1NRwwx/CHdDdulRxEbfw\n0YhSJo4N/QgvvtKZbdsL6NOzit4kPaXra18Ld04vXAgHHVT3dcIJUFmZeqeJ4blLSlIvd865Nijt\n+7ajx/xOBc4HXiM8MGss8FROStaGJILKhx+Ht+uOkx8CoOpzo5h0dHjIypznwtVSw4bUhICRcMwx\ncP75YXrLlrqv8nL4xz9S79SDinMuD6UVVCQ9DDwHdAP+1cxOMbMHzOx7hCcztn81NXy4LnSCT9w5\nD4CqQ8cwfHS4lPW18tD5N2xwdRjoa8SIcDPgGWfAr38NGzeGx8smXpddFrZ73nkhCE2cGK6e2nvv\n8NoQOv89qDjn8km6V3/daGZzUy0ws2bcN54fnnm6hm98oz+bKgsoLDQGrn0VgKqDD2Xi2EJGjIC1\na43ORcaZZ9TAEUfAiy+Gq6ISV5okXzMM4cH006eH6UTL5aijah/3uHp1+OtBxTmXR9INKiMlvWZm\nGwEk9QXOMrP/y13R2o5HHtzJxxvC3RvV1aLzisUA7Dr4UHr1StxULkDss0/39Np/X/xiuA9l//3D\n+FAnnxxOeSU/6nTAABg2LO7qOOdczqQbVC4ws5sTM2b2qaQLCFeFtXv1h8zStm3Y5ydQs89+e+RN\n+wq+Tp3gV7+qnV+zBj76qG6e/fdvG/eAOOdcmtINKoWSZBbujpNUCHSYO4i2JI0+chPfBcCmfSdl\n3qwvCx8wIPXd7s45l0fSvfrrb8ADko6XdDxwX5TWIWzZEiLF7Rcv5Lv8HzUHHQynn75HvrwZrt45\n53Ik3ZbKT4HvABdF808Bt+WkRG3Qlm0hWvTcEa7IssGDKSjYM4J4UHHOdXRpBZVoaJbfRa8OJ9Gn\nsu/tPwsTA/ZGBUKqO3agBxXnXEeX7thfw4HrgJEkDWJrZgfkqFxtytbKMNxZD6K73wf0B3lQcc65\n+tLtU7mD0EqpAo4D7gbuyVWh2pptG8NQLN0JTRb17QsFBXsEkbx5rrxzzuVIuofBrmY2B5CZrTGz\n/wS+krtitS1btoTmyO6WSvduu1sqybyl4pzr6NLtqN8hqYAwSvElwFo6yvAsBlt3hTEzbcoUtrCJ\nbqedBtIeLRMPKs65ji7doPIDwrhf3wd+RjgFdm6uCtWW1BhsqQ7dSDr9dD476GC6d63xlopzzqXQ\n5Omv6EbHr5tZpZlVmNl5Znaamc1PY90TJa2StFrSHg8UkTRE0hxJSySVSSpJSn9V0iJJ5ZIuTFqn\nLNrmoui1d4Z1zsjOTVUYBRSzDRsytPbBihKFhaEfJfnlnHMdWZMtFTOrlnRMphuOgtHNwJeACmCB\npFlmtjwp23TgbjO7S9IkwhVm3wI+AI40sx2SegDLonXfj9Y728yyfBxiZqrXfgpAj4Kt0KWYPr2i\nB19K9OnTEiVwzrn8ke7pr9ckzQL+DOweCcvM/tLIOhOA1Wb2FoCk+4FTgeSgMhK4NJqeCzwSbXdn\nUp4uZPDcl7jt2FAFQI/CbUCn2lNc3ixxzrk9pBtUioENwKSkNAMaCyqDgPeS5iuAI+rlWQxMITzw\nazLQU1I/M9sgaTDwOHAg8JOkVgrAHZKqgYeAnyfGJEsmaRowDWDgwIGUlZU1WclUPnivGoABndZT\n/uF6Oq23EFhefz2r7eWDysrKrN+vfOV17hg6Wp1bo77p3lF/Xo72fxlwk6SpwDzCVWXV0T7fAw6T\ntB/wiKSZZvYR4dTXWkk9CUHlW4T7ZuqX+VbgVoDx48dbaWlpVgX8x02PADCs56ccNugQ+vWtoVOR\nYN99s9pePigrKyPb9ytfeZ07ho5W59aob7p31N9BaJnUYWb/r5HV1gKDk+ZLorTk9d8ntFSI+k5O\nSzyzJTmPpGXAscBMM1sbpW+WdC/hNNseQSUuH68PQ8+X9PystjPeL/NyzrmU0u0YeIxwKupxYA7Q\nCxJ3AjZoATBc0jBJnYEzgVnJGST1j+5/AbgCmBGll0jqGk33BY4BVknqJKl/lF4EnAwsS7MOWfnw\nk3A7TknvzUhRPPGg4pxzKaV7+uuh5HlJ9wHPN7FOVXSj5JNAITDDzMolXQssNLNZQClwnSQjnP76\nbrT6COA3UbqA6Wa2VFJ34MkooBQCTwN/SK+q2floY08ABu+1lQKZBxXnnGtEuh319Q0Hmrw/xMxm\nA7PrpV2VND0TmJlivaeAw1KkbwHGZVHerG3e3gWA/ntV196j4ld+OedcSun2qWymbp/Kh4RnrLR7\nO3aGt6i4V+c6Nz4655zbU7qnv3rmuiBt1faq8BZ17dW5toHiQcU551JK6zyOpMmSeifN95H01dwV\nq+3YURUGk+zWpzOFBVFjzYOKc86llG7nwNVm9lliJrrs9+rcFKlt2V7dGYBufbt4n4pzzjUh3aNj\nqnzZdvLnle01oaO+W+8i71NxzrkmpBsYFkq6njBAJIRLf1/JTZHalm2JoHLAPmjQfq1cGueca9vS\nbal8D9gJPADcD2yn9p6SdquqCnbRGVFD5x6dW7s4zjnX5qV79dcWYI/nobR327aFv13ZhroWt25h\nnHMuD6R79ddTkvokzfeV9GTuitU2JAcVij2oOOdcU9I9/dU/eaBHM/uUNO6oz3eJoNKNrdClS+sW\nxjnn8kC6QaVG0v6JGUlDSTFqcXvjLRXnnMtMuld/XQk8L+lZwgCPxxI9AKs9qxNUvKXinHNNSrej\n/m+SxhMCyWuEx/5uy2XB2oJtW2qAAg8qzjmXpnQHlDwf+AHhQVuLgInAi9R9vHC7s21zFdCZrtru\nNzw651wa0u1T+QHweWCNmR0HjAE2Nr5K/tv22U4AuhbsbOWSOOdcfkg3qGw3s+0AkrqY2Urgc7kr\nVtsQWirQtdCDinPOpSPdjvqK6D6VR4CnJH0KrMldsdqGXdt2AVDUqaaVS+Kcc/kh3Y76ydHkf0qa\nC/QG/pazUrUVu0JLRQXen+Kcc+nIeKRhM3s2FwVpk3aFlkrt8MTOOeca4w8GaUwiqBR4UHHOuXR4\nUGnM7paKv03OOZcOP1o2pspbKs45lwkPKo3Z6X0qzjmXCQ8qjakKV3/56S/nnEuPHy0bkwgqBf42\nOedcOvxo2RhLjO7v96k451w6PKikw2OKc86lJadBRdKJklZJWi1pj2fcSxoiaY6kJZLKJJUkpb8q\naZGkckkXJq0zTtLSaJs3Sj58sHPOtRU5CyqSCoGbgS8DI4GzJI2sl206cLeZHQZcC1wXpX8AHGlm\no4EjgMsl7Rct+x1wATA8ep2Yqzo455zLTC5bKhOA1Wb2lpntBO4HTq2XZyTwTDQ9N7HczHaa2Y4o\nvUuinJL2BXqZ2XwzM+Bu4Ks5rINzzrkMZDz2VwYGAe8lzVcQWh3JFgNTgN8Ck4GekvqZ2QZJg4HH\ngQOBn5jZ+9HTJyvqbXNQqp1Lmkb0yOOBAwdSVlaWcQUq1q4DYPv27Vmtn68qKys7VH3B69xRdLQ6\nt0Z9cxlU0nEZcJOkqcA8YC1QDWBm7wGHRae9HpE0M5MNm9mtwK0A48ePt9LS0owL9/6fXwCguLiY\n0tKjM14/X5WVlZHN+5XPvM4dQ0erc2vUN5dBZS0wOGm+JErbzczeJ7RUkNQDOM3MNtbPI2kZcCzw\nQrSdBrfpnHOu9eSyT2UBMFzSMEmdgTOBWckZJPWXlCjDFcCMKL1EUtdoui9wDLDKzD4ANkmaGF31\ndQ7waA7r4JxzLgM5CypmVgVcAjwJrAAeNLNySddKOiXKVgqskvQ6MBD4RZQ+AnhJ0mLgWWC6mS2N\nll0M3AasBt4EnshVHZxzzmUmp30qZjYbmF0v7aqk6ZnAHn0lZvYUcFgD21wIHBJvSZ1zzsXB76h3\nzjkXGw8qzjnnYuNBxTnnXGw8qDjnnIuNBxXnnHOx8aDinHMuNh5UnHPOxcaDinPOudh4UHHOORcb\nDyrOOedi40HFOedcbDyoOOeci40HFeecc7HxoOKccy42HlScc87FxoOKc8652HhQcc45FxsPKs45\n52LjQcU551xsPKg455yLjQcV55xzsfGg4pxzLjYeVJxzzsXGg0ojDLV2EZxzLq94UEmDhxbnnEuP\nBxXnnHOx8aDinHMuNjkNKpJOlLRK0mpJl6dYPkTSHElLJJVJKonSR0t6UVJ5tOzrSevcKeltSYui\n1+icVcAsZ5t2zrn2KGdBRVIhcDPwZWAkcJakkfWyTQfuNrPDgGuB66L0rcA5ZjYKOBG4QVKfpPV+\nYmajo9eiXNXBOedcZjrlcNsTgNVm9haApPuBU4HlSXlGApdG03OBRwDM7PVEBjN7X9I6YACwMYfl\ndc7lmV27dlFRUcH27dvTyt+7d29WrFiR41K1HenWt7i4mJKSEoqKipq9z1wGlUHAe0nzFcAR9fIs\nBqYAvwUmAz0l9TOzDYkMkiYAnYE3k9b7haSrgDnA5Wa2Iwfld861cRUVFfTs2ZOhQ4ciNX2d5ubN\nm+nZs2cLlKxtSKe+ZsaGDVDjpX0AABPJSURBVBuoqKhg2LBhzd5nLoNKOi4DbpI0FZgHrAWqEwsl\n7Qv8ETjXzGqi5CuADwmB5lbgp4RTZ3VImgZMAxg4cCBlZWUZF27t2nUAbN++Pav181VlZWWHqi94\nnfNV79696devH5WVlWnlr66uZvPmzTkuVduRbn07d+7Mxo0bY/k+5DKorAUGJ82XRGm7mdn7hJYK\nknoAp5nZxmi+F/A4cKWZzU9a54NocoekOwiBaQ9mdish6DB+/HgrLS3NvAIPvgCEpmFp6dEZr5+v\nysrKyOb9ymde5/y0YsUKevXqlXZ+b6k0rLi4mDFjxjR7n7m8+msBMFzSMEmdgTOBWckZJPWXlCjD\nFcCMKL0z8DChE39mvXX2jf4K+CqwLId1cM45l4GcBRUzqwIuAZ4EVgAPmlm5pGslnRJlKwVWSXod\nGAj8Iko/A/gCMDXFpcN/krQUWAr0B36eqzo451xLGzp0KOvXr2/tYmQtp30qZjYbmF0v7aqk6ZnA\nzBTr3QPc08A2J8VcTOeci4WZYWYUFHTc+8o7bs2dc+2L1OSrZ69eaeWr82rCO++8w+c+9znOOecc\nDjnkEL797W8zfvx4Ro0axdVXX70739ChQ7n66qsZO3Yshx56KCtXrgRgw4YNnHDCCYwaNYrzzz8f\nS7rp+vrrr+eQQw7hkEMO4YYbbti9v4MPPpipU6dy0EEHcfbZZ/P0009z9NFHM3z4cF5++eWY39jM\neFBxzrlmeuONN7j44ospLy/nN7/5DQsXLmTJkiU8++yzLFmyZHe+/v378+qrr3LRRRcxffp0AK65\n5hqOOeYYysvLmTx5Mu+++y4Ar7zyCnfccQcvvfQS8+fP5w9/+AOvvfYaAKtXr+bHP/4xK1euZOXK\nldx77708//zzTJ8+nV/+8pct/wYk8aDinGsfzJp8bd60Ka18dV5pGDJkCBMnTgTgwQcfZOzYsYwZ\nM4by8nKWL6+933vKlCkAjBs3jnfeeQeAefPm8c1vfhOAr3zlK/Tt2xeA559/nsmTJ9O9e3d69OjB\nlClTeO655wAYNmwYhx56KAUFBYwaNYrjjz8eSRx66KG7t9taWvs+Feecy3vdu3cH4O2332b69Oks\nWLCAvn37MnXq1Dp3+3fp0gWAwsJCqqqqst5fYjsABQUFu+cLCgqatd04eEvFOedismnTJrp3707v\n3r356KOPeOKJJ5pc5wtf+AL33nsvAE888QSffvopAMceeyyPPPIIW7duZcuWLTz88MMce+yxOS1/\nHLyl4pxzMTn88MMZM2YMBx98MIMHD+boo5u+afrqq6/mrLPOYtSoURx11FHsv//+AIwdO5apU6cy\nYcIEAM4//3zGjBnT6qe3muJBxTnnmmHo0KEsW1Z7D/add96ZMl9yMBg/fvzuIVH69evH3//+95Tr\nXHrppVx66aV10hrbX/1lrcFPfznnnIuNBxXnnHOx8aDinHMuNh5UnHPOxcaDinPOudh4UHHOORcb\nDyrOOdcG9OjRo8k8N9xwA1u3bt09f9JJJ7Fx48ZcFitjHlSccy5P1A8qs2fPpk+fPq1Yoj15UHHO\ntQvpjGLfq1fPuEe+B+Cee+5hwoQJjB49mu985zvcfPPN/OQnP9m9/M477+SSSy4BUg9nn6ysrIyT\nTz559/wll1zCnXfeyY033sj777/Pcccdx3HHHQfUfaBXqu2uWbOGESNGcMEFFzBq1ChOOOEEtm3b\nltX7my4PKs451wwrVqzggQce4IUXXmDRokUUFhbSo0cPHn744d15HnjgAc4888xGh7Nvyve//332\n228/5s6dy9y5c+ssa2y7b7zxBt/97ncpLy+nT58+PPTQQ/FVPgUPKs65diGdUew3bdoc+8j3c+bM\n4ZVXXuHzn/88o0ePZs6cObz99tsccMABzJ8/nw0bNrBy5UqOPvroRoezb46mhskfPTo8jT15yP1c\n8bG/nHOuGcyMc889l+uuu65O+owZM3jwwQc5+OCDmTx5MkrzXFqnTp2oqanZPZ88dH42kofJLyws\n9NNfzjnXlh1//PHMnDmTdevWAfDJJ5+wZs0aJk+ezKOPPsp9993HmWeeCaQ3nP2QIUNYvnw5O3bs\nYOPGjcyZM2f3sp49e7J58+Y9ytCWhsn3lopzzjXDyJEj+fnPf84JJ5xATU0NRUVF3HzzzQwZMoQR\nI0awfPny3cPXNzScfbLBgwdzxhlncMghhzBs2LA6y6dNm8aJJ564u28loaHttsqIxWbW7l/jxo2z\nbNxz0fMGZt8Y8nxW6+eruXPntnYRWpzXOT8tX748o/ybNm3KUUnapkzqm+q9BBZahsdbP/3lnHMu\nNh5UnHPOxcaDinMur1k61/26RsX5HnpQcc7lreLiYjZs2OCBpRnMjA0bNlBcXBzL9vzqL+dc3iop\nKaGiooKPP/44rfzbt2+P7eCZD9Ktb3FxMSUlJbHs04OKcy5vFRUVMWzYsLTzl5WV7XEJb3vWGvXN\n6ekvSSdKWiVptaTLUywfImmOpCWSyiSVROmjJb0oqTxa9vWkdYZJeina5gOSOueyDs4559KXs6Ai\nqRC4GfgyMBI4S9LIetmmA3eb2WHAtUBinIOtwDlmNgo4EbhBUmJ85/8C/sfMDgQ+Bb6dqzo455zL\nTC5bKhOA1Wb2lpntBO4HTq2XZyTwTDQ9N7HczF43szei6feBdcAAhcFzJgEzo3XuAr6awzo455zL\nQC77VAYB7yXNVwBH1MuzGJgC/BaYDPSU1M/MNiQySJoAdAbeBPoBG82sKmmbg1LtXNI0YFo0Wylp\nVZb16H/vGtbfm+ZzFdqJ/sD61i5EC/M6dwwdrc7Nre+QTFdo7Y76y4CbJE0F5gFrgerEQkn7An8E\nzjWzmnRH+QQws1uBW5tbQEkLzWx8c7eTT7zOHYPXuf1rjfrmMqisBQYnzZdEabtFp7amAEjqAZxm\nZhuj+V7A48CVZjY/WmUD0EdSp6i1ssc2nXPOtZ5c9qksAIZHV2t1Bs4EZiVnkNRfUqIMVwAzovTO\nwMOETvxE/wnRAGdzga9FSecCj+awDs455zKQs6AStSQuAZ4EVgAPmlm5pGslnRJlKwVWSXodGAj8\nIko/A/gCMFXSoug1Olr2U+BSSasJfSy356oOkWafQstDXueOwevc/rV4feXDGzjnnIuLj/3lnHMu\nNh5UnHPOxcaDSiOaGmamLZA0Q9I6ScuS0vaS9JSkN6K/faN0Sboxqs8SSWOT1jk3yv+GpHOT0sdJ\nWhqtc2N0A2pW+4ixzoMlzZW0PBrK5wftvd6SiiW9LGlxVOdrovRhSjFskaQu0fzqaPnQpG1dEaWv\nkvQvSekpv+/Z7CPGehdKek3SYx2kvu9E37tFkhZGafn1vc70UZEd5QUUEm64PIBw8+ViYGRrlytF\nOb8AjAWWJaX9N3B5NH058F/R9EnAE4CAicBLUfpewFvR377RdN9o2ctRXkXrfjmbfcRc532BsdF0\nT+B1wugM7bbe0XZ7RNNFwEvRfh4EzozSbwEuiqYvBm6Jps8EHoimR0bf5S7AsOg7XtjY9z3TfcRc\n70uBe4HHsilLHtb3HaB/vbS8+l63+kGxrb6AI4Enk+avAK5o7XI1UNah1A0qq4B9o+l9gVXR9O+B\ns+rnA84Cfp+U/vsobV9gZVL67nyZ7iPH9X8U+FJHqTfQDXiVMELFeqBT/e8s4arLI6PpTlE+1f8e\nJ/I19H2P1sloHzHWswSYQxia6bFsypJP9Y22+w57BpW8+l776a+GpRpmJuWQMG3QQDP7IJr+kHC5\nNjRcp8bSK1KkZ7OPnIhOQYwh/HJv1/WOTgUtIoyF9xThl3ZDwxbtLk+0/DPCJfiZvheNDY3U0D7i\ncgPwb0BNNJ9NWfKpvgAG/F3SKwpDTUGefa9be5gWl2NmZpJyet14S+wjFYVRGB4Cfmhmm5Q0jE97\nrLeZVQOjFUbsfhg4uKX23dIknQysM7NXJJW2dnla0DFmtlbS3sBTklYmL8yH77W3VBrW5DAzbdhH\nCuOmJcZPWxelN1SnxtJLUqRns49YSSoiBJQ/mdlfsixT3tUbwMJQRnMJp2b6SEr8OEze5+7yRMt7\nE4Y5yvS92D00Ugb7iMPRwCmS3iGMcD6JMPBse60vAGa2Nvq7jvDDYQJ59r32oNKwJoeZacNmEYaw\ngbpD2cwCzomu6JgIfBY1eZ8ETpDUN7rq4wTCeeQPgE2SJkZXiZxTb1uZ7CM2UVluB1aY2fUdod6S\nBkQtFCR1JfQhraDhYYuSy/k14BkLJ8VnAWdGVzINA4YTOm9Tft+jdTLdR7OZ2RVmVmJmQ6OyPGNm\nZ7fX+gJI6i6pZ2Ka8H1cRr59r+PsZGpvL8KVD68Tzl1f2drlaaCM9wEfALsI5zu/TTjPOwd4A3ga\n2CvKK8KD094ElgLjk7bz/4DV0eu8pPTx0Rf7TeAmakdhyHgfMdb5GMK55yXAouh1UnuuN3AY8FpU\n52XAVVH6AYSD5Grgz0CXKL04ml8dLT8gaVtXRuVcRXT1T2Pf92z2EXPdS6m9+qvd1jfa7+LoVZ4o\nU759r32YFuecc7Hx01/OOedi40HFOedcbDyoOOeci40HFeecc7HxoOKccy42HlRcWiT1kXRxGvmG\nSvpGmvmWNZDe5PoNbPMfaeS5TdLIbLZfbzt13g9J+0ma2dg6bZGkUklHNbL8q5KuaskyNUZSmaTx\njSyfLmlSS5bJ1eVBxaWrD2GU1qYMBbIKCk2tn3SXc0pm1uDBMSnP+Wa2PLui1VHn/TCz983sa43k\nb6tKgcbet38D/q9lihKL/yWMsutaiQcVl65fAf+k8JyHX0d32P5a0jKF5zN8PSnfsVG+H0Utj+ck\nvRq9mjrw119/qqRZkp4B5kjqIWlOtK2lkk5NrCipMvpbGv2inSlppaQ/RXcQ1/mlK6lS0i8UnlEy\nX9LAKP2fovmlkn6e2G4T78fulldU5kcUnkvxjqRLJF2q8FyQ+ZL2StrP3xQGD3xO0h5jeUn652gf\ni6L1e0b1myfpcYXngdwiqSDKf4KkF6P3588K46MlntNxTdL7drDCYJwXAj+Ktn9svX0fBOwws/XR\n/OnR571Y0rworTCq/wKF5218J2n9n0b7WizpV1Ha6Og9WCLpYdU+t6NM0n8pPDPm9URZJHWVdL+k\nFZIeBrom7ffOpO/fjwDMbA3QT9I+TXzPXK7k4g5Yf7W/F3sOr38aYaTcQsKIpu8ShswuJbr7OcrX\nDSiOpocDC1NtLyl//fWnEkYKSNzh2wnoFU33J9wxnLiJtzJpG58RxikqAF4kDNQHUEZ0VzDhrvx/\njab/G/j3aPoxouG+CQfdyjTej93zUZlXE571MiAqy4XRsv8hDIAJ4Q7m4dH0EYRhP+rv56/A0dF0\nj6j+pcB2wh3YhdHn8LXo/ZgHdI/y/5TaO+/fAb4XTV8M3BZN/ydwWQOf+XnAb5LmlwKDouk+0d9p\nSe9bF2Ah4bklXwb+AXSLliU+vyXAP0fT1wI3JH0uv4mmTwKejqYvBWZE04cBVYS7wscBTyWVrU/S\n9B+A01r7f6ajvryl4rJ1DHCfmVWb2UfAs8DnU+QrAv4gaSlhiIts+jOeMrNPomkBv5S0hDCcxCBq\nh+lO9rKZVZhZDWEYl6Ep8uwkBBCAV5LyHBmVFcIDorIx18w2m9nHhKDy1yh9KTA0akEcBfxZYTj7\n3xOCcn0vANdL+j7hwJkYkv1lM3vLwsjF9xE+j4mE9/eFaJvnAkOStpUYeDO5ro3ZF/i4XlnulHQB\nIZhBGFfqnGh/LxGG+xgOfBG4w8y2ApjZJ5J6R3V4Nlr3LsJD5hor3xeAe6JtLCEEJQgPnjpA0v9K\nOhHYlLSddcB+adTP5YAPfe9y7UfAR8DhhFbD9iy2sSVp+mzCr/9xZrZLYRTb4hTr7Eiarib1d32X\nRT9tG8mTreT91yTN10T7KSA8t2N0Yxsxs19Jepzw6/0F1T4Ot/74SkYIuE+Z2VlNlCndum4jjMSb\nKMuFko4AvgK8ImlctM/vmdmTySsmlTMTaZfPzD6VdDjwL4TW5BmE8a4gfB+2ZbF/FwNvqbh0bSac\nzkl4Dvh6dG57AOEX5csp8vUGPohaDN+i9hduuvuprzfhORu7JB1H3V/icZlPOL0HYfTaVJoqZ6PM\nbBPwtqTTYfezwA+vn0/SP5nZUjP7L8LIuol+lwkKI+wWAF8Hno/KfbSkA6N1u0f9Io1prB4rgAPr\nleUlM7uK0IIZTBgR9yKFRxEg6SCFEXafAs6T1C1K38vMPgM+Teq7+RahhduYeUQXbkg6hHAKDEn9\ngQIzewj4d8IjtRMOIgya6FqBBxWXFjPbQPilvEzSrwnPelhCGFH1GeDfzOzDKK066pz9EeHKoXMl\nLSYcELek3sNu9dev70/A+Oh02jnAyhR5muuHwKXRKbYDCaev6kjxfmTjbODb0XtTDpyaIs8Po30s\nIYxE/USUvoAwyuwK4G3g4ehU21Tgvij/izT9IK+/ApNTddQTDuhjpN1PP/t11Cm+jNBfshi4DVgO\nvBql/57wKN6/EYZNXxidGrss2sa50XaWAKMJ/SqN+R3QQ9KKKO8rUfogoCza9j2ERwEnnrNzIKFv\nx7UCH6XYuXqiX9fbzMwknUnotE91wG8VCk9CvMzMTm6Bff0W+KuZPZ3rfcVB0mRgrJn9R2uXpaPy\nPhXn9jQOuCn6hb6R2nP1HdEvCVem5YtOwG9auxAdmbdUnHPOxcb7VJxzzsXGg4pzzrnYeFBxzjkX\nGw8qzjnnYuNBxTnnXGz+P/49ipLwK8GAAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -571,11 +575,11 @@ ] }, { + "cell_type": "markdown", "metadata": { "id": "DPnRtp0zXUDh", "colab_type": "text" }, - "cell_type": "markdown", "source": [ "## More information\n", "\n", @@ -583,5 +587,4 @@ ] } ] -} - +} \ No newline at end of file diff --git a/README.md b/README.md index 65dd69bbd..5deee5fc8 100644 --- a/README.md +++ b/README.md @@ -16,15 +16,19 @@ Search](https://arxiv.org/abs/1902.09635) If you use this dataset, please cite: ``` -@ARTICLE{ying2019nasbench, - author = {{Ying}, Chris and {Klein}, Aaron and {Real}, Esteban and - {Christiansen}, Eric and {Murphy}, Kevin and {Hutter}, Frank}, - title = "{NAS-Bench-101: Towards Reproducible Neural Architecture Search}", - journal = {arXiv e-prints}, - year = "2019", - month = "Feb", - eid = {arXiv:1902.09635} -} +@InProceedings{pmlr-v97-ying19a, + title = {{NAS}-Bench-101: Towards Reproducible Neural Architecture Search}, + author = {Ying, Chris and Klein, Aaron and Christiansen, Eric and Real, Esteban and Murphy, Kevin and Hutter, Frank}, + booktitle = {Proceedings of the 36th International Conference on Machine Learning}, + pages = {7105--7114}, + year = {2019}, + editor = {Chaudhuri, Kamalika and Salakhutdinov, Ruslan}, + volume = {97}, + series = {Proceedings of Machine Learning Research}, + address = {Long Beach, California, USA}, + month = {09--15 Jun}, + publisher = {PMLR}, + url = {http://proceedings.mlr.press/v97/ying19a.html}, ``` ## Dataset overview