Skip to content

googleinterns/step126-2020

Repository files navigation

Google Student Training in Engineering Program Capstone

Overview

A web application that displays opinions over time surrounding the police and law enforcement.

Features

  1. Map with data layers This feature uses government database json files to draw lines seperating zip codes and police precincts in two seperate data layers, and integrates features below based on user click in Map API. On the zip code layer it displays the zip code, neighborhood, and associated police precincts for user reference and on the precinct layer it allows sentiment mapping by using analysis done on survey responses seperated by date received and zip code association. Map API includes buttons opening seperate pages for detailed statistics analysis and word cloud based on strong negative and positive associations also.

  2. Positive and negative word associations

The positive and negative associations of words within open text responses were analyzed using CloudNLP. The top positive and negative associations were displayed along with a wordcloud displaying all results (with size corresponding to prominence in the text and color corresponding to average sentiment). You can view these results for the entirety of SF or a specific precinct.

  1. Statistics and predictions

Fetches from the Google Surveys API, transforms data for GCP Datastore, and visualizes analysis through the Google Charts API. This feature also runs a decision tree regression model on the survey results to get predicted sentiment scores for users based on their gender, age group, and whether they had a direct experience with the police or not. The program for regression analysis was written in Python with the Flask framework. Using crom jobs and a separate python service on GAE, new prediction results can be automatically generated for new survey responses. There is a statistics page with survey-specific details such as response time and completion, age and gender break down, and sentiment percentages for each precinct.

Tools and Technologies

Some of the tools that will be used to build this portfolio are

  • HTML
  • CSS
  • Javascript
  • Java
  • Python

APIs

The following APIs were used

Deploying the project

To deploy the main project

  1. Install maven (https://maven.apache.org/install.html)
  2. Navigate to the capstone directory.
  3. Modify pom.xml to contain the GCP project ID.
  4. Ensure that GCP Cloud Build (https://console.developers.google.com/apis/api/cloudbuild.googleapis.com) and natural language (https://console.developers.google.com/apis/library/language.googleapis.com) are enabled on the cloud project.
  5. Run mvn package appengine:deploy to deploy the project live or mvn package appengine:run to run the project on the local server.

Additional instructions for deploying the python service:

  1. Ensure that you have the requirement.txt file set up with all the relevant dependencies. Do pip freeze to get the dependencies
  2. Set up a new app.yaml file with the service name, runtime, static files or script specified
  3. Keep these files along with your source code in a separate directory
  4. Deploy the separate service using gcloud app deploy --project [PROJECT_ID]
  5. (Optional) Include a cron.yaml file with the schedule field specified

GitHub Checks

This repository runs checks on every pull request and commit. You can run these locally from the root directory of the project.

  • Java Continuous Integration: Run mvn package
  • Java Format: Follow the instructions at https://github.com/google/google-java-format to download the .jar. Place the jar in the top level directory of the repository. You can then run it seperately with instructions from the the formatter README (must use java 11) or run all tests together as shown below.
  • JavaScript Lint:
    • One time setup: run npm install
    • Run ./node_modules/.bin/eslint capstone/src/.
  • All tests can be run using ./lint or ./lint-replace if you want to automatically fix the errors found

License

This code is licensed under the Apache 2.0 License.

About

No description, website, or topics provided.

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published