forked from pytorch/botorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tutorials.json
116 lines (116 loc) · 3.19 KB
/
tutorials.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
{
"Using BoTorch with Ax": [
{
"id": "custom_botorch_model_in_ax",
"title": "Using a custom BoTorch model"
}
],
"Full Optimization Loops": [
{
"id": "closed_loop_botorch_only",
"title": "q-Noisy Constrained EI"
},
{
"id": "preference_bo",
"title": "Bayesian optimization with pairwise comparison data"
},
{
"id": "turbo_1",
"title": "Trust Region Bayesian Optimization (TuRBO)"
},
{
"id": "bo_with_warped_gp",
"title": "Bayesian optimization with input warping"
},
{
"id": "thompson_sampling",
"title": "Bayesian optimization with large-scale Thompson sampling"
}
],
"Multi-Objective Bayesian Optimization": [
{
"id": "multi_objective_bo",
"title": "Multi-objective optimization with qEHVI, qNEHVI, and qNParEGO"
},
{
"id": "constrained_multi_objective_bo",
"title": "Constrained multi-objective optimization with qNEHVI and qParEGO"
}
],
"Bite-Sized Tutorials": [
{
"id": "fit_model_with_torch_optimizer",
"title": "Fitting a model using torch.optim"
},
{
"id": "compare_mc_analytic_acquisition",
"title": "Comparing analytic and MC Expected Improvement"
},
{
"id": "optimize_with_cmaes",
"title": "Acquisition function optimization with CMA-ES"
},
{
"id": "optimize_stochastic",
"title": "Acquisition function optimization with torch.optim"
},
{
"id": "batch_mode_cross_validation",
"title": "Using batch evaluation for fast cross-validation"
},
{
"id": "custom_acquisition",
"title": "Writing a custom acquisition function"
},
{
"id": "one_shot_kg",
"title": "The one-shot Knowledge Gradient acquisition function"
},
{
"id": "max_value_entropy",
"title": "The max-value entropy search acquisition function"
},
{
"id": "GIBBON_for_efficient_batch_entropy_search",
"title": "The GIBBON acquisition function for efficient batch entropy search"
},
{
"id": "risk_averse_bo_with_environmental_variables",
"title": "Risk averse Bayesian optimization with environmental variables"
},
{
"id": "risk_averse_bo_with_input_perturbations",
"title": "Risk averse Bayesian optimization with input perturbations"
},
{
"id": "constraint_active_search",
"title": "Constraint Active Search for Multiobjective Experimental Design"
}
],
"Advanced Usage": [
{
"id": "meta_learning_with_rgpe",
"title": "Meta-learning with RGPE"
},
{
"id": "vae_mnist",
"title": "High-dimensional optimization with VAEs"
},
{
"id": "multi_fidelity_bo",
"title": "Multi-fidelity Bayesian optimization using KG"
},
{
"id": "discrete_multi_fidelity_bo",
"title": "Multi-fidelity Bayesian optimization with discrete fidelities using KG"
},
{
"id": "composite_bo_with_hogp",
"title": "Composite Bayesian optimization with the High Order Gaussian Process"
},
{
"id": "composite_mtbo",
"title": "Composite Bayesian Optimization with Multi-Task Gaussian Processes"
}
]
}