-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathTemplates.py
407 lines (316 loc) · 14.5 KB
/
Templates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
#
# Author: Grayson Petter
import numpy as np
from astropy import units as u
from astropy import constants as const
import math
import pickle
from scipy.io import readsav
from scipy.optimize import curve_fit
import WISE
from astropy.cosmology import FlatLambdaCDM
import pandas as pd
import glob
# speed of light
c = 299792458. # m/s
# path to project
projpath = '/Users/graysonpetter/Desktop/Dartmouth/HIZEA/hizea-VLA-SFRs/'
# set cosmology for calculating luminosity distance
cosmo = FlatLambdaCDM(H0=70, Om0=0.3)
# Read in all templates except for AGN (SFGs and Composite)
templates = glob.glob(projpath + 'Comprehensive_library/SFG*.txt')
templates.extend(
glob.glob(projpath + 'Comprehensive_library/Comp*.txt'))
char_e = readsav('/Users/graysonpetter/Downloads/chary_elbaz_codes/chary_elbaz.save')
ce_temps = np.transpose(char_e['nuLnuinLsun'])
ce_waves = char_e['lambda']
ce_tots = char_e['Lir']
wise_bandpasses_3_4 = sorted(glob.glob(projpath + 'bandpass/*.txt'))[2:4]
# take in a template and redshift every wavelength
def redshift_spectrum(z, template, trim, table):
if table:
t = pd.read_csv(template, delim_whitespace=True, engine='python', header=None)
#t.columns = ['lambda_e', 'L', 'dL']
wavelengths = np.array(t.iloc[:, 0])
Lums = np.array(t.iloc[:, 1])
else:
wavelengths = ce_waves
Lums = template
if trim:
# cut template down to 8-1000 microns
spec_range = np.where((wavelengths >= 8.) & (wavelengths <= 1000.))[0]
wavelengths = wavelengths[spec_range]
Lums = Lums[spec_range]
shifted_len = np.array(wavelengths)*(1+z)
# get luminosity at 12 & 22 micron
twelve_mu = (np.abs(shifted_len - 12)).argmin()
twenty_two_mu = (np.abs(shifted_len - 22)).argmin()
return wavelengths, Lums, Lums[twelve_mu], Lums[twenty_two_mu], shifted_len
def interpolate_spec(shifted_spec, model):
# convert wavelengths in microns to frequencies in Hz
nus = (10 ** 6) * c / (shifted_spec[0])
# reverse lists so frequencies go from low to high for simplicity
reversed_nus = np.flipud(nus).flatten()
reversed_lums = np.flipud(shifted_spec[1])
# calculate constant interval to interpolate on
if model:
step = reversed_nus[1] - reversed_nus[0]
dx = round(step, -(len(str(int(step))) - 1))
else:
dx = 10000000000
# find smallest factor of dx Hz greater than the smallest frequency in the list
start = (reversed_nus[0] + int(dx)) - (reversed_nus[0] % int(dx))
# number of dx Hz intervals in entire template
span = reversed_nus[len(reversed_nus) - 1] - reversed_nus[0]
chunks = int(math.floor(span / dx))
new_nus, new_lums = [], []
current_nu = start
# linearly interpolate to frequencies in dx Hz steps
for x in range(chunks):
new_nus.append(current_nu)
new_lums.append(np.interp(current_nu, reversed_nus, reversed_lums))
current_nu += dx
return new_nus, new_lums, dx
# integrate spectrum using trapezoid method (rectangle below
def integrate_spectrum(freqs, Ls, dx):
tot_ir = 0.
for x in range(len(freqs) - 1):
if Ls[x + 1] > Ls[x]:
rect = dx * Ls[x]
tri = (dx * (Ls[x + 1] - Ls[x])) / 2.
else:
rect = dx * Ls[x + 1]
tri = (dx * (Ls[x] - Ls[x + 1])) / 2.
tot_ir += (rect + tri)
return tot_ir
def test_templates(zz):
ratio_list = []
with open(projpath + 'integrations/kirk.txt', 'rb') as fb:
total_ir = np.array(pickle.load(fb))
for x in range(len(templates)):
shifted_spectrum = redshift_spectrum(zz, templates[x], True, True)
twenty_two_lum = shifted_spectrum[3]
ratio_list.append(total_ir[x] / twenty_two_lum)
# ratio_list = np.log10(np.array(ratio_list))
ratio_list = (np.array(ratio_list))
averg = np.mean(ratio_list)
stdev = np.std(ratio_list)
# range_ratios = np.ptp(ratio_list)
return stdev / averg
def simulate_wise_fluxes_for_colors(z, tems, bands, csv):
tot_mag_list, template_names = [], []
# iterate through templates
for tem in tems:
# redshift template
red_spec = redshift_spectrum(z, tem, False, True)
red_waves = np.array(red_spec[4])
lumi = np.array(red_spec[1])
normalized = []
# iterate through WISE bands
for y in range(len(bands)):
if csv:
band = pd.read_csv(bands[y], header=None, engine='python')
else:
band = pd.read_csv(bands[y], header=None, delim_whitespace=True, engine='python')
bandwaves = np.array(band.iloc[:, 0])
band_response = np.array(band.iloc[:, 1])
# trim template to same wavelength range as WISE band
cut = np.where((red_waves >= np.min(bandwaves)) & (red_waves <= np.max(bandwaves)))[0]
trimmed_y = red_waves[cut]
trimmed_L = lumi[cut]
# interpolate template to band wavelengths, multiply by the response at that wavelength
inter_lum = []
for j in range(len(bandwaves)):
inter_lum.append(band_response[j] * (np.interp(bandwaves[j], trimmed_y, trimmed_L)))
# crude method
"""sum_lum = np.sum(np.array(inter_lum))
sum_waves = np.sum(np.array(band_response))
normalized.append(sum_lum/sum_waves)"""
# integrate template multiplied by response function
spectrum = [bandwaves, inter_lum]
interped_again = interpolate_spec(spectrum, True)
wise_lums = integrate_spectrum(interped_again[0], interped_again[1], interped_again[2])
# integrate wise band
band_spectrum = [bandwaves, band_response]
interped_band = interpolate_spec(band_spectrum, True)
integrated_band = integrate_spectrum(interped_band[0], interped_band[1], interped_band[2])
# divide two
normalized.append(wise_lums / integrated_band)
tot_mag_list.append(normalized)
template_names.append(tem.split('.txt')[0].split('/')[8])
return tot_mag_list, template_names
def simulate_wise_fluxes(z, tem, bands, csv):
tot_mag_list = []
# redshift template
red_spec = redshift_spectrum(z, tem, False, True)
red_waves = np.array(red_spec[4])
lumi = np.array(red_spec[1])
normalized = []
# iterate through WISE bands
for y in range(len(bands)):
if csv:
band = pd.read_csv(bands[y], header=None, engine='python')
else:
band = pd.read_csv(bands[y], header=None, delim_whitespace=True, engine='python')
bandwaves = np.array(band.iloc[:, 0])
band_response = np.array(band.iloc[:, 1])
band_apple = np.multiply(bandwaves, band_response)
# trim template to same wavelength range as WISE band
cut = np.where((red_waves >= np.min(bandwaves)) & (red_waves <= np.max(bandwaves)))[0]
trimmed_y = red_waves[cut]
trimmed_L = lumi[cut]
# interpolate template to band wavelengths, multiply by the response at that wavelength
inter_lum = []
for i in range(len(bandwaves)):
inter_lum.append(band_apple[i] * (np.interp(bandwaves[i], trimmed_y, trimmed_L)))
# crude method
"""sum_lum = np.sum(np.array(inter_lum))
sum_waves = np.sum(np.array(band_response))
normalized.append(sum_lum/sum_waves)"""
# integrate template multiplied by response function
spectrum = [bandwaves, inter_lum]
interped_again = interpolate_spec(spectrum, True)
wise_lums = integrate_spectrum(interped_again[0], interped_again[1], interped_again[2])
# integrate wise band
band_spectrum = [bandwaves, band_apple]
interped_band = interpolate_spec(band_spectrum, True)
integrated_band = integrate_spectrum(interped_band[0], interped_band[1], interped_band[2])
# divide two
normalized.append(wise_lums / integrated_band)
return normalized
def chary_elbaz(zz):
ratios = []
for i in range(len(ce_tots)):
shifted = redshift_spectrum(zz, ce_temps[i], True, False)
twenty_two_lum = shifted[3]
ratios.append(ce_tots[i]/twenty_two_lum)
ratio_list = (np.array(ratios))
averg = np.mean(ratio_list)
stdev = np.std(ratio_list)
# range_ratios = np.ptp(ratio_list)
return stdev / averg
def writetotals():
totlist = []
for x in range(len(templates)):
shifted_spectrum = redshift_spectrum(0, templates[x], True, True)
interped_spectrum = interpolate_spec(shifted_spectrum, False)
total_ir = integrate_spectrum(interped_spectrum[0], interped_spectrum[1], interped_spectrum[2])
totlist.append(total_ir)
with open(projpath + 'integrations/kirk.txt', 'wb') as fb:
pickle.dump(totlist, fb)
writetotals()
def Kennicut1998(L_IR, L_ir_err):
L_IR = L_IR.to('erg/s').value
L_ir_err = L_ir_err.to('erg/s').value
SFR = 4.5e-44*L_IR
SFR_err = L_ir_err/L_IR*SFR
return SFR, SFR_err
def murphyIRSFR(L_IR, L_ir_err):
L_IR = L_IR.to('erg/s').value
L_ir_err = L_ir_err.to('erg/s').value
SFR = 3.88e-44 * L_IR
SFR_err = L_ir_err / L_IR * SFR
return SFR, SFR_err
def test_SFRs(z, name, table, tems=templates):
d = cosmo.luminosity_distance(z)
fluxes = WISE.mag_to_flux(name)
w3_flux = fluxes[0] * u.Jy
w3_flux_err = fluxes[2] * u.Jy
w_four_good = False
simulate_flux = True
w3_lum = (w3_flux*4*np.pi*d**2).to('W/Hz')
w3_lum_err = ((4*np.pi*d**2)*w3_flux_err).to('W/Hz')
band_nine_fluxes = []
# if there's data for W4
if not np.isnan(fluxes[1]):
w4_flux = fluxes[1] * u.Jy
w4_flux_err = fluxes[3] * u.Jy
w_four_good = True
w4_lum = (w4_flux*4*np.pi*d**2).to('W/Hz')
w4_lum_err = ((4*np.pi*d**2)*w4_flux_err).to('W/Hz')
# which templates to use (kirk = kirkpatrick 2015, chary = chary & elbaz, both= both of them)
key = 'kirk'
SFRs, SFR_errs = [], []
if key=='both':
with open(projpath + 'integrations/kirk.txt', 'rb') as fb:
total_ir = np.array(pickle.load(fb))
for i, tem in enumerate(tems):
tem_lum = redshift_spectrum(z, tem, True, table)
l_ratio = w3_lum.value/tem_lum[2]
#shifted_lums = np.array(tem_lum[1])*l_ratio
#shifted_tem = [tem_lum[0], shifted_lums]
"""if i==0:
plt.figure(0)
plt.plot(tem_lum_w3[0], tem_lum_w3[1])
plt.scatter(12, lum.value, c='k')
plt.plot(tem_lum_w3[0], shifted_lums)
plt.xlim(8, 15)
plt.show()
plt.close()
plt.clf()
plt.cla()"""
#interped_spectrum = interpolate_spec(shifted_tem, True)
#total_ir = integrate_spectrum(interped_spectrum[0], interped_spectrum[1], interped_spectrum[2])*u.W
SFR = Kennicut1998(total_ir[i]*l_ratio*u.W)
SFRs.append(SFR)
for i, tem in enumerate(ce_temps):
shifted = redshift_spectrum(z, tem, True, False)
freq = (const.c/((12*u.micron))).to('Hz')
twelve_micron = shifted[2]*u.solLum/freq
l_ratio = w3_lum/(twelve_micron.to('W/Hz'))
SFR = Kennicut1998((ce_tots[i]*u.solLum * l_ratio).to('W'))
SFRs.append(SFR)
elif key == 'chary':
for i, tem in enumerate(ce_temps):
shifted = redshift_spectrum(z, tem, True, False)
freq = (const.c/((12*u.micron))).to('Hz')
twelve_micron = shifted[2]*u.solLum/freq
l_ratio = w3_lum/(twelve_micron.to('W/Hz'))
SFR = Kennicut1998((ce_tots[i]*u.solLum * l_ratio).to('W'))
SFRs.append(SFR)
elif key == 'kirk':
with open(projpath + 'integrations/kirk.txt', 'rb') as fb:
total_ir = np.array(pickle.load(fb))
for i, tem in enumerate(tems):
tem_lum = redshift_spectrum(z, tem, False, table)
if w_four_good:
wavelengthsaye = tem_lum[4]
maxcutoff = min((np.where(wavelengthsaye > 25.0)[0]))
mincutoff = max(np.where(wavelengthsaye < 7.)[0])
lums = tem_lum[1][mincutoff:maxcutoff]
lams = np.array(tem_lum[4])[mincutoff:maxcutoff]
fit = np.flipud(np.polyfit(lams, lums, 12))
lambdas = np.array([float(12.082), float(22.194)])
measured_lums = np.array([float(w3_lum.value), float(w4_lum.value)])
measured_lum_errs = np.array([float(w3_lum_err.value), float(w4_lum_err.value)])
def func(x, a):
return a * sum((q * x ** j for j, q in enumerate(fit)))
if simulate_flux:
simulated = np.array(simulate_wise_fluxes(z, tem, wise_bandpasses_3_4, False))
#def func(a):
# return a*simulated
l_ratio = (measured_lums[0]*simulated[0]/(measured_lum_errs[0])**2 + measured_lums[1]*simulated[1]/(measured_lum_errs[1])**2)/((simulated[0]/measured_lum_errs[0])**2 + (simulated[1]/measured_lum_errs[1])**2)
normalization_percent_err = 0
else:
popt, pcov = curve_fit(func, lambdas, measured_lums, sigma=measured_lum_errs)
l_ratio = float(popt)
normalization_percent_err = np.sqrt(float(pcov)) / float(popt)
else:
l_ratio = float(w3_lum.value/tem_lum[2])
"""shifted_lums = np.array(tem_lum[1])*l_ratio
shifted_tem = [tem_lum[0], shifted_lums]
interped_spectrum = interpolate_spec(shifted_tem, True)
total_ir = integrate_spectrum(interped_spectrum[0], interped_spectrum[1], interped_spectrum[2])*u.W"""
normalization_percent_err = float(w3_lum_err/w3_lum)
L_ir_tot = total_ir[i]*l_ratio*u.W
L_ir_tot_err = normalization_percent_err*L_ir_tot
#print(normalization_percent_err)
SFR = murphyIRSFR(L_ir_tot, L_ir_tot_err)
SFRs.append(SFR[0])
"""idxboob = np.abs((np.array(tem_lum[4])-450.)).argmin()
band_nine_lum = ((tem_lum[1])[idxboob]*l_ratio)*u.J
band_nine_fluxes.append(((band_nine_lum/(4*np.pi*d**2))[0].to('Jy')).value)
SFR_errs.append(SFR[1])
print(name, min(band_nine_fluxes), max(band_nine_fluxes))"""
SFR_uncertainty = np.sqrt(np.sum(np.square(SFR_errs)))/len(SFR_errs)
return np.average(SFRs), np.std(SFRs), SFR_uncertainty