-
Notifications
You must be signed in to change notification settings - Fork 345
/
model.py
290 lines (243 loc) · 11.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import json
import time
from dataclasses import dataclass
from typing import Mapping, List, Dict, Union
import click
import torch
import torch._dynamo
from loguru import logger
from torch import nn, Tensor
from torch.utils.data import DataLoader
from criteo_dataset import CriteoParquetDataset
torch._dynamo.reset()
class MLP(nn.Module):
def __init__(self, input_size: int, hidden_sizes: List[int], output_size: int):
super(MLP, self).__init__()
fc_layers = []
for i, hidden_size in enumerate(hidden_sizes):
if i == 0:
fc_layers.append(nn.Linear(input_size, hidden_size))
else:
fc_layers.append(nn.Linear(hidden_sizes[i - 1], hidden_size))
fc_layers.append(nn.ReLU())
fc_layers.append(nn.Linear(hidden_sizes[-1], output_size))
self.fc_layers = nn.Sequential(*fc_layers)
def forward(self, x: torch.Tensor):
return self.fc_layers(x)
class DenseArch(nn.Module):
def __init__(self,
dense_feature_count: int,
dense_hidden_layers_sizes: List[int],
output_size: int,
*args, **kwargs) -> None:
super(DenseArch, self).__init__(*args, **kwargs)
self.mlp = MLP(input_size=dense_feature_count,
hidden_sizes=dense_hidden_layers_sizes,
output_size=output_size) # D X O
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
# Input : B X D # Output : B X O
return self.mlp(inputs)
class SparseFeatureLayer(nn.Module):
def __init__(self, cardinality: int, embedding_size: int):
super(SparseFeatureLayer, self).__init__()
self.embedding = nn.Embedding(cardinality, embedding_size)
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
# Input : B X 1 # Output : B X E
embeddings = self.embedding(inputs)
return embeddings
class SparseArch(nn.Module):
def __init__(self, metadata: Dict[str, Union[int, List[int], Dict[str, int]]],
embedding_sizes: Mapping[str, int],
device: str = "cpu",
*args, **kwargs) -> None:
super(SparseArch, self).__init__(*args, **kwargs)
self.num_sparse_features = len(metadata)
self._modulus_hash_sizes = [m["cardinality"] for m in metadata.values()]
self.sparse_layers = nn.ModuleList([
SparseFeatureLayer(cardinality=self._modulus_hash_sizes[i],
embedding_size=embedding_sizes[feature_name]) for i, feature_name in
enumerate(metadata.keys())
])
# Create mapping for each sparse feature
# Slide 1: use a regular python list
# self.mapping = [torch.tensor(metadata[f"SPARSE_{i}"]["tokenizer_values"]) for i in
# range(self.num_sparse_features)]
# Slide 2: use tensor on device
self.mapping = [torch.tensor(metadata[f"SPARSE_{i}"]["tokenizer_values"], device=device) for i in
range(self.num_sparse_features)]
self.cardinality_tensor = torch.tensor(self._modulus_hash_sizes).to(device)
@staticmethod
def index_hash(tensor: torch.Tensor, tokenizer_values: Union[List[int], torch.Tensor]):
# tensor = tensor.reshape(-1, 1)
# tokenizers = torch.tensor(tokenizer_values).reshape(1, -1)
tensor = tensor.view(-1, 1)
tokenizers = tokenizer_values.view(1, -1)
# if tensor.is_cuda:
# tokenizers = tokenizers.cuda()
matches = tensor == tokenizers
indices = torch.argmax(matches.to(torch.int64), dim=1)
return indices
@staticmethod
def modulus_hash(tensor: torch.Tensor, cardinality: torch.Tensor):
return (tensor + 1) % cardinality
def _forward_index_hash(self, inputs: torch.Tensor) -> List[torch.Tensor]:
output_values = []
for i in range(self.num_sparse_features):
indices = self.index_hash(inputs[:, i], self.mapping[i])
sparse_out = self.sparse_layers[i](indices)
output_values.append(sparse_out)
return output_values
def _forward_modulus_hash(self, inputs: torch.Tensor) -> List[torch.Tensor]:
sparse_hashed = self.modulus_hash(inputs, self.cardinality_tensor)
return [sparse_layer(sparse_hashed[:, i]) for i, sparse_layer in enumerate(self.sparse_layers)]
def forward(self, inputs: torch.Tensor) -> List[torch.Tensor]:
# slide 1:
# return self._forward_index_hash(inputs)
# # slide 2:
return self._forward_modulus_hash(inputs)
class DenseSparseInteractionLayer(nn.Module):
SUPPORTED_INTERACTION_TYPES = ["dot", "cat"]
def __init__(self, interaction_type: str = "dot"):
super(DenseSparseInteractionLayer, self).__init__()
if interaction_type not in self.SUPPORTED_INTERACTION_TYPES:
raise ValueError(f"Interaction type {interaction_type} not supported. "
f"Supported types are {self.SUPPORTED_INTERACTION_TYPES}")
self.interaction_type = interaction_type
def forward(self, dense_out: torch.Tensor,
sparse_out: List[torch.Tensor]) -> Tensor:
concat = torch.cat([dense_out] + sparse_out, dim=-1).unsqueeze(2)
if self.interaction_type == "dot":
out = torch.bmm(concat, torch.transpose(concat, 1, 2))
else:
out = concat
flattened = torch.flatten(out, 1)
return flattened
class PredictionLayer(nn.Module):
def __init__(self,
dense_out_size: int,
sparse_out_sizes: List[int],
hidden_sizes: List[int], *wargs, **kwargs):
super(PredictionLayer, self).__init__(*wargs, **kwargs)
concat_size = sum(sparse_out_sizes) + dense_out_size
self.mlp = MLP(input_size=concat_size * concat_size,
hidden_sizes=hidden_sizes, output_size=1)
self.sigmoid = nn.Sigmoid()
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
mlp_out = self.mlp(inputs)
result = self.sigmoid(mlp_out)
return result
@dataclass
class Parameters:
dense_input_feature_size: int
sparse_embedding_sizes: Mapping[str, int]
dense_mlp: Dict[str, Union[List[int], int]]
prediction_hidden_sizes: List[int]
use_modulus_hash: bool = False
class DLRM(nn.Module):
def __init__(self, metadata: Dict[str, Union[int, List[int]]],
parameters: Parameters,
device: str = "cpu"):
super(DLRM, self).__init__()
self.dense_layer = DenseArch(
dense_feature_count=parameters.dense_input_feature_size,
dense_hidden_layers_sizes=parameters.dense_mlp[
"hidden_layer_sizes"],
output_size=parameters.dense_mlp["output_size"])
self.sparse_layer = SparseArch(
metadata=metadata,
embedding_sizes=parameters.sparse_embedding_sizes,
device=device
)
self.interaction_layer = DenseSparseInteractionLayer()
self.prediction_layer = PredictionLayer(
dense_out_size=parameters.dense_mlp["output_size"],
sparse_out_sizes=[parameters.sparse_embedding_sizes[f"SPARSE_{i}"] for i in
range(len(parameters.sparse_embedding_sizes))],
hidden_sizes=parameters.prediction_hidden_sizes,
)
def forward(self, dense_features: torch.Tensor,
sparse_features: torch.Tensor) -> float:
dense_out = self.dense_layer(dense_features)
sparse_out = self.sparse_layer(sparse_features)
ds_out = self.interaction_layer(dense_out, sparse_out)
return self.prediction_layer(ds_out).squeeze()
def read_metadata(metadata_path):
with open(metadata_path, 'r') as f:
metadata = json.load(f)
return metadata
@click.command()
@click.option('--file_path',
type=click.Path(exists=True), help='Path to the parquet file', default="data/sample_criteo_data.parquet")
@click.option('--metadata_path',
type=click.Path(exists=True), help='Path to the metadata file',
default="data/sample_criteo_metadata.json")
def dry_run_with_data(file_path, metadata_path):
"""
Process the file specified by --file_path and use metadata from --metadata_path.
"""
logger.info("Reading the parquet file {}...".format(file_path))
logger.info("Reading the metadata file {}...".format(metadata_path))
dataset = CriteoParquetDataset(file_path)
data_loader = DataLoader(dataset, batch_size=32, shuffle=False)
labels, dense, sparse = next(iter(data_loader))
logger.info("Labels size: {}".format(labels.size()))
logger.info("Dense size: {}".format(dense.size()))
logger.info("Sparse size: {}".format(sparse.size()))
dense_mlp_out_size = 16
num_dense_features = dense.size()[1]
dense_arch = DenseArch(dense_feature_count=num_dense_features,
dense_hidden_layers_sizes=[32],
output_size=dense_mlp_out_size)
# dense_arch_optim = torch.compile(dense_arch)
dense_out = dense_arch(dense)
logger.info("Dense out size: {}".format(dense_out.size()))
metadata = read_metadata(metadata_path)
embedding_size = 16
embedding_sizes = {fn: embedding_size for fn in metadata.keys()}
sparse_mlp_out_size = 16
sparse_arch = SparseArch(metadata=metadata,
embedding_sizes=embedding_sizes)
# compiled model hangs on running with inputs
# sparse_arch_optim = torch.compile(sparse_arch)
sparse_out = sparse_arch(sparse)
for v in sparse_out:
logger.info("Sparse out size: {}".format(v.size()))
dense_sparse_interaction_layer = DenseSparseInteractionLayer()
# dense_sparse_interaction_layer_optim = torch.compile(dense_sparse_interaction_layer)
ds_out = dense_sparse_interaction_layer(dense_out, sparse_out)
logger.info("Dense sparse interaction out size: {}".format(ds_out.size()))
prediction_layer = PredictionLayer(dense_out_size=dense_mlp_out_size,
sparse_out_sizes=[sparse_mlp_out_size] * len(metadata),
hidden_sizes=[16])
# prediction_layer_optim = torch.compile(prediction_layer)
pred_out = prediction_layer(ds_out)
logger.info("Prediction out size: {}".format(pred_out.size()))
logger.info("Prediction out value: {}".format(pred_out))
# TODO dry run the DLRM model
parameters = Parameters(
dense_input_feature_size=13,
sparse_embedding_sizes={
"SPARSE_{}".format(i): 16 for i in range(26)
},
dense_mlp={
"hidden_layer_sizes": [16],
"output_size": 16
},
prediction_hidden_sizes=[16],
use_modulus_hash=True
)
import torch._dynamo
torch._dynamo.reset()
torch._dynamo.config.verbose = True
dlrm = DLRM(metadata, parameters)
_ = dlrm(dense, sparse)
# dlrm_optim = torch.compile(dlrm, backend="aot_eager")
dlrm_optim = torch.compile(dlrm, backend="inductor", fullgraph=True)
# logger.info("Compiled DLRM model: {}".format(dlrm))
start = time.time()
prediction = dlrm_optim(dense, sparse)
logger.info("DLRM prediction size: {}".format(prediction.size()))
logger.info("[COMPILED] Time taken for prediction: {}".format(time.time() - start))
torch.onnx.export(dlrm, (dense, sparse), './data/dlrm.onnx')
if __name__ == "__main__":
dry_run_with_data()