-
Notifications
You must be signed in to change notification settings - Fork 4
/
separate.R
92 lines (66 loc) · 2.49 KB
/
separate.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
##*********************************************************
## Data
##*********************************************************
library(joineR)
library(ggplot2)
epileptic <- read.table("epileptic.txt", header = TRUE)
head(epileptic)
epileptic$time <- epileptic$time / 365.25
epileptic$with.time <- epileptic$with.time / 365.25
epileptic$status <- rep("Censored", nrow(epileptic))
epileptic$status[epileptic$with.status.uae == 1] <- "UAE"
epileptic$status[epileptic$with.status.isc == 1] <- "ISC"
# epileptic$time2 <- do.call("c",
# by(epileptic, epileptic$id, function(u) u$time - max(u$time)))
## Profile plots
ggplot(aes(x = time - with.time, y = dose), data = epileptic) +
geom_line(aes(group = id), colour = "grey", size = 0.8) +
facet_grid(status ~ treat) +
#theme_bw() +
labs(
x = "Time before treatment failure or censoring (years)",
y = "Calibrated dose"
) +
geom_smooth(aes(group = 1), colour = "red", se = FALSE, size = 1.5,
method = "loess", span = 0.7) +
theme(text = element_text(size = 16))
ggsave("figure1.pdf", width = 7, height = 7)
ggsave("figure1.png", width = 7, height = 7)
##*********************************************************
## Seperate models
##*********************************************************
## Model data
# Time-to-event data (one row per subject)
survdat <- epileptic[ , c(1, 4, 6, 7, 8)]
nobs <- table(survdat$id)
survdat <- survdat[!duplicated(survdat$id), ]
# Logitudinal data
longdat <- epileptic[ , c(1:3, 8)]
ptm <- proc.time()
## Longitudinal submodel
lmeFit <- lme(dose ~ treat * time,
random = ~ time | id,
data = epileptic)
summary(lmeFit)
getVarCov(lmeFit)
fixef(lmeFit) - qnorm(0.975) * sqrt(diag(lmeFit$varFix))
fixef(lmeFit) + qnorm(0.975) * sqrt(diag(lmeFit$varFix))
## Time-to-event submodel
coxFit.uae <- coxph(Surv(with.time, with.status.uae) ~ treat,
data = survdat)
summary(coxFit.uae)
confint(coxFit.uae)
coxFit.isc <- coxph(Surv(with.time, with.status.isc) ~ treat,
data = survdat)
summary(coxFit.isc)
confint(coxFit.isc)
proc.time() - ptm # CPU time
## Random effects parameterization w/o joint modelling
survdat$b1 <- ranef(lmeFit)[,1] + fixef(lmeFit)[1]
survdat$b2 <- ranef(lmeFit)[,2] + fixef(lmeFit)[3]
coxFit1 <- coxph(Surv(with.time, with.status.isc) ~ treat + b1 + b2,
data = survdat)
coxFit2 <- coxph(Surv(with.time, with.status.uae) ~ treat + b1 + b2,
data = survdat)
summary(coxFit1)
summary(coxFit2)