Skip to content

Commit

Permalink
docs: use custom templates for ML resource docs (#1802)
Browse files Browse the repository at this point in the history
  • Loading branch information
sd2k authored Sep 19, 2024
1 parent 422b1f7 commit efc549c
Show file tree
Hide file tree
Showing 10 changed files with 361 additions and 97 deletions.
49 changes: 31 additions & 18 deletions docs/resources/machine_learning_alert.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,10 @@ description: |-

## Example Usage

### Forecast Alert

This alert uses a forecast.

```terraform
resource "grafana_machine_learning_job" "test_alert_job" {
name = "Test Job"
Expand All @@ -32,28 +36,37 @@ resource "grafana_machine_learning_alert" "test_job_alert" {
}
```

<!-- schema generated by tfplugindocs -->
## Schema

### Required

- `title` (String) The title of the alert.
### Outlier Alert

### Optional
This alert uses an outlier detector.

- `annotations` (Map of String) Annotations to add to the alert generated in Grafana.
- `anomaly_condition` (String) The condition for when to consider a point as anomalous.
- `for` (String) How long values must be anomalous before firing an alert.
- `job_id` (String) The forecast this alert belongs to.
- `labels` (Map of String) Labels to add to the alert generated in Grafana.
- `no_data_state` (String) How the alert should be processed when no data is returned by the underlying series
- `outlier_id` (String) The forecast this alert belongs to.
- `threshold` (String) The threshold of points over the window that need to be anomalous to alert.
- `window` (String) How much time to average values over
```terraform
resource "grafana_machine_learning_outlier_detector" "test_alert_outlier_detector" {
name = "Test Outlier"
### Read-Only
metric = "tf_test_alert_outlier"
datasource_type = "prometheus"
datasource_uid = "AbCd12345"
query_params = {
expr = "grafanacloud_grafana_instance_active_user_count"
}
interval = 300
algorithm {
name = "dbscan"
sensitivity = 0.5
config {
epsilon = 1.0
}
}
}
- `id` (String) The ID of the alert.
resource "grafana_machine_learning_alert" "test_outlier_alert" {
outlier_id = grafana_machine_learning_outlier_detector.test_alert_outlier_detector.id
title = "Test Alert"
window = "1h"
}
```

## Import

Expand Down
54 changes: 30 additions & 24 deletions docs/resources/machine_learning_holiday.md
Original file line number Diff line number Diff line change
Expand Up @@ -29,37 +29,43 @@ resource "grafana_machine_learning_job" "test_job" {
}
```

## Example Usage

### iCal Holiday

<!-- schema generated by tfplugindocs -->
## Schema
This holiday uses an iCal file to define the holidays.

### Required

- `name` (String) The name of the holiday.

### Optional

- `custom_periods` (Block List) A list of custom periods for the holiday. (see [below for nested schema](#nestedblock--custom_periods))
- `description` (String) A description of the holiday.
- `ical_timezone` (String) The timezone to use for events in the iCal file pointed to by ical_url.
- `ical_url` (String) A URL to an iCal file containing all occurrences of the holiday.

### Read-Only

- `id` (String) The ID of the holiday.

<a id="nestedblock--custom_periods"></a>
### Nested Schema for `custom_periods`
```terraform
resource "grafana_machine_learning_holiday" "ical" {
name = "My iCal holiday"
description = "My Holiday"
Required:
ical_url = "https://calendar.google.com/calendar/ical/en.uk%23holiday%40group.v.calendar.google.com/public/basic.ics"
ical_timezone = "Europe/London"
}
```

- `end_time` (String)
- `start_time` (String)
### Custom Periods Holiday

Optional:
This holiday uses custom periods to define the holidays.

- `name` (String) The name of the custom period.
```terraform
resource "grafana_machine_learning_holiday" "custom_periods" {
name = "My custom periods holiday"
description = "My Holiday"
custom_periods {
name = "First of January"
start_time = "2023-01-01T00:00:00Z"
end_time = "2023-01-02T00:00:00Z"
}
custom_periods {
name = "First of Feburary"
start_time = "2023-02-01T00:00:00Z"
end_time = "2023-02-02T00:00:00Z"
}
}
```

## Import

Expand Down
136 changes: 119 additions & 17 deletions docs/resources/machine_learning_job.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,31 +10,133 @@ description: |-

A job defines the queries and model parameters for a machine learning task.

## Example Usage

### Basic Forecast

<!-- schema generated by tfplugindocs -->
## Schema
This forecast uses a Prometheus datasource, where the source query is defined in the `expr` field of the `query_params` attribute.

### Required
Other datasources are supported, but the structure `query_params` may differ.

- `datasource_type` (String) The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.
- `datasource_uid` (String) The uid of the datasource to query.
- `metric` (String) The metric used to query the job results.
- `name` (String) The name of the job.
- `query_params` (Map of String) An object representing the query params to query Grafana with.
```terraform
resource "grafana_data_source" "foo" {
type = "prometheus"
name = "prometheus-ds-test"
uid = "prometheus-ds-test-uid"
url = "https://my-instance.com"
basic_auth_enabled = true
basic_auth_username = "username"
### Optional
json_data_encoded = jsonencode({
httpMethod = "POST"
prometheusType = "Mimir"
prometheusVersion = "2.4.0"
})
- `custom_labels` (Map of String) An object representing the custom labels added on the forecast.
- `description` (String) A description of the job.
- `holidays` (List of String) A list of holiday IDs or names to take into account when training the model.
- `hyper_params` (Map of String) The hyperparameters used to fine tune the algorithm. See https://grafana.com/docs/grafana-cloud/machine-learning/models/ for the full list of available hyperparameters. Defaults to `map[]`.
- `interval` (Number) The data interval in seconds to train the data on. Defaults to `300`.
- `training_window` (Number) The data interval in seconds to train the data on. Defaults to `7776000`.
secure_json_data_encoded = jsonencode({
basicAuthPassword = "password"
})
}
### Read-Only
resource "grafana_machine_learning_job" "test_job" {
name = "Test Job"
metric = "tf_test_job"
datasource_type = "prometheus"
datasource_uid = grafana_data_source.foo.uid
query_params = {
expr = "grafanacloud_grafana_instance_active_user_count"
}
}
```

### Tuned Forecast

This forecast has tuned hyperparameters to improve the accuracy of the model.

```terraform
resource "grafana_data_source" "foo" {
type = "prometheus"
name = "prometheus-ds-test"
uid = "prometheus-ds-test-uid"
url = "https://my-instance.com"
basic_auth_enabled = true
basic_auth_username = "username"
json_data_encoded = jsonencode({
httpMethod = "POST"
prometheusType = "Mimir"
prometheusVersion = "2.4.0"
})
secure_json_data_encoded = jsonencode({
basicAuthPassword = "password"
})
}
resource "grafana_machine_learning_job" "test_job" {
name = "Test Job"
metric = "tf_test_job"
datasource_type = "prometheus"
datasource_uid = grafana_data_source.foo.uid
query_params = {
expr = "grafanacloud_grafana_instance_active_user_count"
}
hyper_params = {
daily_seasonality = 15
weekly_seasonality = 10
}
custom_labels = {
example_label = "example_value"
}
}
```

- `id` (String) The ID of the job.
### Forecast with Holidays

This forecast has holidays which will be taken into account when training the model.

```terraform
resource "grafana_data_source" "foo" {
type = "prometheus"
name = "prometheus-ds-test"
uid = "prometheus-ds-test-uid"
url = "https://my-instance.com"
basic_auth_enabled = true
basic_auth_username = "username"
json_data_encoded = jsonencode({
httpMethod = "POST"
prometheusType = "Mimir"
prometheusVersion = "2.4.0"
})
secure_json_data_encoded = jsonencode({
basicAuthPassword = "password"
})
}
resource "grafana_machine_learning_holiday" "test_holiday" {
name = "Test Holiday"
custom_periods {
name = "First of January"
start_time = "2023-01-01T00:00:00Z"
end_time = "2023-01-02T00:00:00Z"
}
}
resource "grafana_machine_learning_job" "test_job" {
name = "Test Job"
metric = "tf_test_job"
datasource_type = "prometheus"
datasource_uid = grafana_data_source.foo.uid
query_params = {
expr = "grafanacloud_grafana_instance_active_user_count"
}
holidays = [
grafana_machine_learning_holiday.test_holiday.id
]
}
```

## Import

Expand Down
83 changes: 47 additions & 36 deletions docs/resources/machine_learning_outlier_detector.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,47 +16,58 @@ The normal band is configured by choice of algorithm, its sensitivity and other

Visit https://grafana.com/docs/grafana-cloud/machine-learning/outlier-detection/ for more details.

## Example Usage

### DBSCAN Outlier Detector

This outlier detector uses the DBSCAN algorithm to detect outliers.

```terraform
resource "grafana_machine_learning_outlier_detector" "my_dbscan_outlier_detector" {
name = "My DBSCAN outlier detector"
description = "My DBSCAN Outlier Detector"
metric = "tf_test_dbscan_job"
datasource_type = "prometheus"
datasource_uid = "AbCd12345"
query_params = {
expr = "grafanacloud_grafana_instance_active_user_count"
}
interval = 300
algorithm {
name = "dbscan"
sensitivity = 0.5
config {
epsilon = 1.0
}
}
}
```

### MAD Outlier Detector

<!-- schema generated by tfplugindocs -->
## Schema

### Required

- `algorithm` (Block Set, Min: 1, Max: 1) The algorithm to use and its configuration. See https://grafana.com/docs/grafana-cloud/machine-learning/outlier-detection/ for details. (see [below for nested schema](#nestedblock--algorithm))
- `datasource_type` (String) The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.
- `datasource_uid` (String) The uid of the datasource to query.
- `metric` (String) The metric used to query the outlier detector results.
- `name` (String) The name of the outlier detector.
- `query_params` (Map of String) An object representing the query params to query Grafana with.

### Optional

- `description` (String) A description of the outlier detector.
- `interval` (Number) The data interval in seconds to monitor. Defaults to `300`.

### Read-Only

- `id` (String) The ID of the outlier detector.

<a id="nestedblock--algorithm"></a>
### Nested Schema for `algorithm`

Required:

- `name` (String) The name of the algorithm to use ('mad' or 'dbscan').
- `sensitivity` (Number) Specify the sensitivity of the detector (in range [0,1]).

Optional:

- `config` (Block Set, Max: 1) For DBSCAN only, specify the configuration map (see [below for nested schema](#nestedblock--algorithm--config))
This outlier detector uses the Median Absolute Deviation (MAD) algorithm to detect outliers.

<a id="nestedblock--algorithm--config"></a>
### Nested Schema for `algorithm.config`
```terraform
resource "grafana_machine_learning_outlier_detector" "my_mad_outlier_detector" {
name = "My MAD outlier detector"
description = "My MAD Outlier Detector"
Required:
metric = "tf_test_mad_job"
datasource_type = "prometheus"
datasource_uid = "AbCd12345"
query_params = {
expr = "grafanacloud_grafana_instance_active_user_count"
}
interval = 300
- `epsilon` (Number) Specify the epsilon parameter (positive float)
algorithm {
name = "mad"
sensitivity = 0.7
}
}
```

## Import

Expand Down
4 changes: 2 additions & 2 deletions internal/resources/machinelearning/resource_alert_test.go
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ func TestAccResourceJobAlert(t *testing.T) {
),
Steps: []resource.TestStep{
{
Config: testutils.TestAccExampleWithReplace(t, "resources/grafana_machine_learning_alert/resource.tf", map[string]string{
Config: testutils.TestAccExampleWithReplace(t, "resources/grafana_machine_learning_alert/forecast_alert.tf", map[string]string{
"Test Job": randomJobName,
"Test Alert": randomAlertName,
}),
Expand All @@ -46,7 +46,7 @@ func TestAccResourceJobAlert(t *testing.T) {
},
// Update the alert with a new anomaly condition.
{
Config: testutils.TestAccExampleWithReplace(t, "resources/grafana_machine_learning_alert/resource.tf", map[string]string{
Config: testutils.TestAccExampleWithReplace(t, "resources/grafana_machine_learning_alert/forecast_alert.tf", map[string]string{
"Test Job": randomJobName,
"Test Alert": randomAlertName,
"\"any\"": "\"low\"",
Expand Down
Loading

0 comments on commit efc549c

Please sign in to comment.