Skip to content

Commit

Permalink
Implement reduce precision FP8 MNIST training example. (#87)
Browse files Browse the repository at this point in the history
Supporting FP8 simulated training using `ml_dtypes` library. Allowing custom cast on forward and backward pass.
  • Loading branch information
balancap authored Jan 16, 2024
1 parent 10e0471 commit a1ea373
Show file tree
Hide file tree
Showing 5 changed files with 238 additions and 14 deletions.
161 changes: 161 additions & 0 deletions experiments/mnist/mnist_classifier_from_scratch_fp8.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,161 @@
# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""A basic MNIST example using Numpy and JAX.
The primary aim here is simplicity and minimal dependencies.
"""


import time

import datasets
import jax
import jax.numpy as jnp
import ml_dtypes
import numpy as np
import numpy.random as npr
from jax import grad, jit, lax

import jax_scaled_arithmetics as jsa

# from functools import partial


def print_mean_std(name, v):
data, scale = jsa.lax.get_data_scale(v)
# Always use np.float32, to avoid floating errors in descaling + stats.
data = jsa.asarray(data, dtype=np.float32)
m, s, min, max = np.mean(data), np.std(data), np.min(data), np.max(data)
print(f"{name}: MEAN({m:.4f}) / STD({s:.4f}) / MIN({min:.4f}) / MAX({max:.4f}) / SCALE({scale:.4f})")


def logsumexp(a, axis=None, keepdims=False):
dims = (axis,)
amax = jnp.max(a, axis=dims, keepdims=keepdims)
# FIXME: not proper scale propagation, introducing NaNs
# amax = lax.stop_gradient(lax.select(jnp.isfinite(amax), amax, lax.full_like(amax, 0)))
amax = lax.stop_gradient(amax)
out = lax.sub(a, amax)
out = lax.exp(out)
out = lax.add(lax.log(jnp.sum(out, axis=dims, keepdims=keepdims)), amax)
return out


def init_random_params(scale, layer_sizes, rng=npr.RandomState(0)):
return [(scale * rng.randn(m, n), scale * rng.randn(n)) for m, n, in zip(layer_sizes[:-1], layer_sizes[1:])]


def predict(params, inputs, use_fp8=True):
cast_ml_dtype = jsa.ops.cast_ml_dtype if use_fp8 else lambda x, d: x
cast_ml_dtype_grad = jsa.ops.cast_ml_dtype_grad if use_fp8 else lambda x, d: x

activations = inputs
for w, b in params[:-1]:
# Forward FP8 casting.
w = cast_ml_dtype(w, ml_dtypes.float8_e4m3fn)
activations = cast_ml_dtype(activations, ml_dtypes.float8_e4m3fn)
# Matmul
outputs = jnp.dot(activations, w)
# Backward FP8 casting
outputs = cast_ml_dtype_grad(outputs, ml_dtypes.float8_e5m2)

# Bias + relu
outputs = outputs + b
activations = jnp.maximum(outputs, 0)

final_w, final_b = params[-1]
# Forward FP8 casting.
# final_w = jsa.ops.cast_ml_dtype(final_w, ml_dtypes.float8_e4m3fn)
activations = cast_ml_dtype(activations, ml_dtypes.float8_e4m3fn)
logits = jnp.dot(activations, final_w)
# Backward FP8 casting
logits = cast_ml_dtype_grad(logits, ml_dtypes.float8_e5m2)

logits = logits + final_b

# Dynamic rescaling of the gradient, as logits gradient not properly scaled.
logits = jsa.ops.dynamic_rescale_l2_grad(logits)
logits = logits - logsumexp(logits, axis=1, keepdims=True)
return logits


def loss(params, batch):
inputs, targets = batch
preds = predict(params, inputs)
return -jnp.mean(jnp.sum(preds * targets, axis=1))


def accuracy(params, batch):
inputs, targets = batch
target_class = jnp.argmax(targets, axis=1)
predicted_class = jnp.argmax(predict(params, inputs, use_fp8=False), axis=1)
return jnp.mean(predicted_class == target_class)


if __name__ == "__main__":
layer_sizes = [784, 1024, 1024, 10]
param_scale = 1.0
step_size = 0.001
num_epochs = 10
batch_size = 128

training_dtype = np.float16
scale_dtype = np.float32

train_images, train_labels, test_images, test_labels = datasets.mnist()
num_train = train_images.shape[0]
num_complete_batches, leftover = divmod(num_train, batch_size)
num_batches = num_complete_batches + bool(leftover)

def data_stream():
rng = npr.RandomState(0)
while True:
perm = rng.permutation(num_train)
for i in range(num_batches):
batch_idx = perm[i * batch_size : (i + 1) * batch_size]
yield train_images[batch_idx], train_labels[batch_idx]

batches = data_stream()
params = init_random_params(param_scale, layer_sizes)
# Transform parameters to `ScaledArray` and proper dtype.
params = jsa.as_scaled_array(params, scale=scale_dtype(param_scale))
params = jax.tree_map(lambda v: v.astype(training_dtype), params, is_leaf=jsa.core.is_scaled_leaf)

@jit
@jsa.autoscale
def update(params, batch):
grads = grad(loss)(params, batch)
return [(w - step_size * dw, b - step_size * db) for (w, b), (dw, db) in zip(params, grads)]

for epoch in range(num_epochs):
start_time = time.time()
for _ in range(num_batches):
batch = next(batches)
# Scaled micro-batch + training dtype cast.
batch = jsa.as_scaled_array(batch, scale=scale_dtype(1))
batch = jax.tree_map(lambda v: v.astype(training_dtype), batch, is_leaf=jsa.core.is_scaled_leaf)

with jsa.AutoScaleConfig(rounding_mode=jsa.Pow2RoundMode.DOWN, scale_dtype=scale_dtype):
params = update(params, batch)

epoch_time = time.time() - start_time

# Evaluation in float32, for consistency.
raw_params = jsa.asarray(params, dtype=np.float32)
train_acc = accuracy(raw_params, (train_images, train_labels))
test_acc = accuracy(raw_params, (test_images, test_labels))
print(f"Epoch {epoch} in {epoch_time:0.2f} sec")
print(f"Training set accuracy {train_acc:0.5f}")
print(f"Test set accuracy {test_acc:0.5f}")
1 change: 1 addition & 0 deletions jax_scaled_arithmetics/ops/__init__.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
# Copyright (c) 2023 Graphcore Ltd. All rights reserved.
from .debug import debug_callback, debug_callback_grad, debug_print, debug_print_grad # noqa: F401
from .ml_dtypes import cast_ml_dtype, cast_ml_dtype_grad # noqa: F401
from .rescaling import ( # noqa: F401
dynamic_rescale_l1,
dynamic_rescale_l1_grad,
Expand Down
25 changes: 25 additions & 0 deletions jax_scaled_arithmetics/ops/ml_dtypes.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
# Copyright (c) 2023 Graphcore Ltd. All rights reserved.
from functools import partial

import jax
import ml_dtypes

from jax_scaled_arithmetics.core import Array, DTypeLike

from .rescaling import fn_bwd_identity_fwd, fn_fwd_identity_bwd


def cast_ml_dtype_base(arr: Array, dtype: DTypeLike) -> Array:
"""`Fake` cast to an ML dtype (e.g. FP8), using JAX LAX `reduce_precision` operator."""
info = ml_dtypes.finfo(dtype)
return jax.lax.reduce_precision(arr, exponent_bits=info.nexp, mantissa_bits=info.nmant)


def cast_ml_dtype(arr: Array, dtype: DTypeLike) -> Array:
"""`Fake` cast to an ML dtype, on the forward pass (no-op on backward pass)."""
return partial(fn_fwd_identity_bwd, lambda v: cast_ml_dtype_base(v, dtype))(arr)


def cast_ml_dtype_grad(arr: Array, dtype: DTypeLike) -> Array:
"""`Fake` cast to an ML dtype on the backward pass (no-op on forward pass)."""
return partial(fn_bwd_identity_fwd, lambda v: cast_ml_dtype_base(v, dtype))(arr)
28 changes: 14 additions & 14 deletions jax_scaled_arithmetics/ops/rescaling.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,37 +9,37 @@


@partial(jax.custom_vjp, nondiff_argnums=(0,))
def fn_with_identity_grad(f, arg):
def fn_fwd_identity_bwd(f, arg):
"""Function with identity bwd/grad."""
return f(arg)


def fn_with_identity_grad_fwd(f, arg):
def fn_fwd_identity_bwd_fwd(f, arg):
return arg, None


def fn_with_identity_grad_bwd(f, _, grad):
def fn_fwd_identity_bwd_bwd(f, _, grad):
return (grad,)


fn_with_identity_grad.defvjp(fn_with_identity_grad_fwd, fn_with_identity_grad_bwd)
fn_fwd_identity_bwd.defvjp(fn_fwd_identity_bwd_fwd, fn_fwd_identity_bwd_bwd)


@partial(jax.custom_vjp, nondiff_argnums=(0,))
def fn_on_grad(f, arg):
def fn_bwd_identity_fwd(f, arg):
"""Apply a function on the gradient/backward pass."""
return arg


def fn_on_grad_fwd(f, arg):
def fn_bwd_identity_fwd_fwd(f, arg):
return arg, None


def fn_on_grad_bwd(f, _, grad):
def fn_bwd_identity_fwd_bwd(f, _, grad):
return (f(grad),)


fn_on_grad.defvjp(fn_on_grad_fwd, fn_on_grad_bwd)
fn_bwd_identity_fwd.defvjp(fn_bwd_identity_fwd_fwd, fn_bwd_identity_fwd_bwd)


def dynamic_rescale_max_base(arr: ScaledArray) -> ScaledArray:
Expand Down Expand Up @@ -97,11 +97,11 @@ def dynamic_rescale_l2_base(arr: ScaledArray) -> ScaledArray:


# Dynamic rescale on fwd arrays.
dynamic_rescale_max = partial(fn_with_identity_grad, dynamic_rescale_max_base)
dynamic_rescale_l1 = partial(fn_with_identity_grad, dynamic_rescale_l1_base)
dynamic_rescale_l2 = partial(fn_with_identity_grad, dynamic_rescale_l2_base)
dynamic_rescale_max = partial(fn_fwd_identity_bwd, dynamic_rescale_max_base)
dynamic_rescale_l1 = partial(fn_fwd_identity_bwd, dynamic_rescale_l1_base)
dynamic_rescale_l2 = partial(fn_fwd_identity_bwd, dynamic_rescale_l2_base)

# Dynamic rescale on gradients.
dynamic_rescale_max_grad = partial(fn_on_grad, dynamic_rescale_max_base)
dynamic_rescale_l1_grad = partial(fn_on_grad, dynamic_rescale_l1_base)
dynamic_rescale_l2_grad = partial(fn_on_grad, dynamic_rescale_l2_base)
dynamic_rescale_max_grad = partial(fn_bwd_identity_fwd, dynamic_rescale_max_base)
dynamic_rescale_l1_grad = partial(fn_bwd_identity_fwd, dynamic_rescale_l1_base)
dynamic_rescale_l2_grad = partial(fn_bwd_identity_fwd, dynamic_rescale_l2_base)
37 changes: 37 additions & 0 deletions tests/ops/test_ml_dtypes.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
# Copyright (c) 2023 Graphcore Ltd. All rights reserved.
from functools import partial

import chex
import ml_dtypes
import numpy as np
import numpy.testing as npt
from absl.testing import parameterized

from jax_scaled_arithmetics.core import autoscale, scaled_array
from jax_scaled_arithmetics.ops import cast_ml_dtype


class CastMLDtypeTests(chex.TestCase):
@parameterized.parameters(
{"ml_dtype": ml_dtypes.float8_e4m3fn},
{"ml_dtype": ml_dtypes.float8_e5m2},
)
def test__cast_ml_dtype__consistent_rounding_down(self, ml_dtype):
# Values potentially "problematic" in FP8.
values = np.array([17, -17, 8, 1, 9, 11, 18], np.float16)
out = cast_ml_dtype(values, dtype=ml_dtype)
expected_out = values.astype(ml_dtype)
assert out.dtype == values.dtype
npt.assert_array_equal(out, expected_out)

@parameterized.parameters(
{"ml_dtype": ml_dtypes.float8_e4m3fn},
{"ml_dtype": ml_dtypes.float8_e5m2},
)
def test__cast_ml_dtype__autoscale_compatiblity(self, ml_dtype):
values = np.array([17, -17, 8, 1, 9, 11, 18], np.float16)
arr = scaled_array(values, np.float32(1))
out = autoscale(partial(cast_ml_dtype, dtype=ml_dtype))(arr)

npt.assert_array_equal(out.scale, arr.scale)
npt.assert_array_equal(out, np.asarray(arr.data).astype(ml_dtype))

0 comments on commit a1ea373

Please sign in to comment.