Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

cifar10 training #96

Merged
merged 1 commit into from
Apr 6, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
149 changes: 149 additions & 0 deletions experiments/mnist/cifar_training.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,149 @@
# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""A basic MNIST example using Numpy and JAX.

The primary aim here is simplicity and minimal dependencies.
"""


import time

import datasets
import jax
import jax.numpy as jnp
import numpy as np
import numpy.random as npr
from jax import grad, jit, lax

import jax_scaled_arithmetics as jsa


def logsumexp(a, axis=None, keepdims=False):
dims = (axis,)
amax = jnp.max(a, axis=dims, keepdims=keepdims)
# FIXME: not proper scale propagation, introducing NaNs
# amax = lax.stop_gradient(lax.select(jnp.isfinite(amax), amax, lax.full_like(amax, 0)))
amax = lax.stop_gradient(amax)
out = lax.sub(a, amax)
out = lax.exp(out)
out = lax.add(lax.log(jnp.sum(out, axis=dims, keepdims=keepdims)), amax)
return out


def init_random_params(scale, layer_sizes, rng=npr.RandomState(0)):
return [(scale * rng.randn(m, n), scale * rng.randn(n)) for m, n, in zip(layer_sizes[:-1], layer_sizes[1:])]


def print_mean_std(name, v):
data, scale = jsa.lax.get_data_scale(v)
# Always use np.float32, to avoid floating errors in descaling + stats.
v = jsa.asarray(data, dtype=np.float32)
m, s = np.mean(v), np.std(v)
# print(data)
print(f"{name}: MEAN({m:.4f}) / STD({s:.4f}) / SCALE({scale:.4f})")


def predict(params, inputs):
activations = inputs
for w, b in params[:-1]:
# Matmul + relu
outputs = jnp.dot(activations, w) + b
activations = jnp.maximum(outputs, 0)

final_w, final_b = params[-1]
logits = jnp.dot(activations, final_w) + final_b

# Dynamic rescaling of the gradient, as logits gradient not properly scaled.
logits = jsa.ops.dynamic_rescale_l2_grad(logits)
output = logits - logsumexp(logits, axis=1, keepdims=True)

return output


def loss(params, batch):
inputs, targets = batch
preds = predict(params, inputs)
return -jnp.mean(jnp.sum(preds * targets, axis=1))


def accuracy(params, batch):
inputs, targets = batch
target_class = jnp.argmax(targets, axis=1)
predicted_class = jnp.argmax(predict(params, inputs), axis=1)
return jnp.mean(predicted_class == target_class)


if __name__ == "__main__":
width = 2048
lr = 1e-4
use_autoscale = True
autoscale = jsa.autoscale if use_autoscale else lambda f: f

layer_sizes = [3072, width, width, 10]
param_scale = 1.0

step_size = lr
num_epochs = 10
batch_size = 128
training_dtype = np.float16
scale_dtype = np.float32

train_images, train_labels, test_images, test_labels = datasets.cifar()
num_train = train_images.shape[0]
num_complete_batches, leftover = divmod(num_train, batch_size)
num_batches = num_complete_batches + bool(leftover)

def data_stream():
rng = npr.RandomState(0)
while True:
perm = rng.permutation(num_train)
for i in range(num_batches):
batch_idx = perm[i * batch_size : (i + 1) * batch_size]
yield train_images[batch_idx], train_labels[batch_idx]

batches = data_stream()
params = init_random_params(param_scale, layer_sizes)
# Transform parameters to `ScaledArray` and proper dtype.
if use_autoscale:
params = jsa.as_scaled_array(params, scale=scale_dtype(param_scale))
params = jax.tree_map(lambda v: v.astype(training_dtype), params, is_leaf=jsa.core.is_scaled_leaf)

@jit
@autoscale
def update(params, batch):
grads = grad(loss)(params, batch)
return [(w - step_size * dw, b - step_size * db) for (w, b), (dw, db) in zip(params, grads)]

for epoch in range(num_epochs):
start_time = time.time()
for _ in range(num_batches):
batch = next(batches)
# Scaled micro-batch + training dtype cast.
if use_autoscale:
batch = jsa.as_scaled_array(batch, scale=scale_dtype(param_scale))
batch = jax.tree_map(lambda v: v.astype(training_dtype), batch, is_leaf=jsa.core.is_scaled_leaf)

with jsa.AutoScaleConfig(rounding_mode=jsa.Pow2RoundMode.DOWN, scale_dtype=scale_dtype):
params = update(params, batch)

epoch_time = time.time() - start_time

# Evaluation in float32, for consistency.
raw_params = jsa.asarray(params, dtype=np.float32)
train_acc = accuracy(raw_params, (train_images, train_labels))
test_acc = accuracy(raw_params, (test_images, test_labels))
print(f"Epoch {epoch} in {epoch_time:0.2f} sec")
print(f"Training set accuracy {train_acc:0.5f}")
print(f"Test set accuracy {test_acc:0.5f}")
Loading