-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathexample.py
45 lines (35 loc) · 1.48 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import libdtw as dtw
import pylab as pl
import math as m
# define query and subject as shifted cosine waves
query = dtw.TimeSeries([m.cos(i/64.0) * m.exp(-0.5*(i-512)**2/256**2) for i in range(1024)])
subject = dtw.TimeSeries([m.cos(i/64.0+1) * m.exp(-0.5*(i-512)**2/256**2) for i in range(1024)])
# plot query and subject for a quick overview
pl.title("query and subject")
pl.plot(query)
pl.plot(subject)
pl.show()
# do for Euclidean and Manhatten mode
for mode, name in [(True, 'Euclidean'), (False, 'Manhatten')]:
# calculate naive L_p-norm
print dtw.dist_euclidean(query, subject) \
if mode == True else \
dtw.dist_manhatten(query, subject)
# calculate a bunch of windowed DTWs (error should decrease monotonically)
for window in range(0, max(len(subject), len(query)), 32):
gamma = dtw.WarpingPath()
print dtw.dist_cdtw_backtrace(query, subject, window, gamma, mode)
pl.plot(*zip(*[node[::-1] for node in gamma]))
# calculate full DTW
print dtw.dist_dtw(query, subject, mode)
# plot objective function H(i,j) := |query(i)-subject(j)|
pl.imshow([[abs(query[i]-subject[j]) for j in range(len(subject))]
for i in range(len(query))], aspect="auto")
pl.title(name)
pl.show()
# draw explicit alignment for full dtw
pl.plot(query)
pl.plot(subject)
for i, j in gamma[0:len(gamma):4]:
pl.plot([i, j], [query[i], subject[j]], c="grey")
pl.show()