forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathknapsack_2d_sat.py
executable file
·379 lines (304 loc) · 13.2 KB
/
knapsack_2d_sat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
#!/usr/bin/env python3
# Copyright 2010-2022 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Solver a 2D rectangle knapsack problem.
This code is adapted from
https://yetanothermathprogrammingconsultant.blogspot.com/2021/10/2d-knapsack-problem.html
"""
import io
from absl import app
from absl import flags
import numpy as np
import pandas as pd
from google.protobuf import text_format
from ortools.sat.python import cp_model
FLAGS = flags.FLAGS
flags.DEFINE_string('output_proto', '',
'Output file to write the cp_model proto to.')
flags.DEFINE_string('params', 'num_search_workers:16,log_search_progress:true',
'Sat solver parameters.')
flags.DEFINE_string('model', 'rotation',
'\'duplicate\' or \'rotation\' or \'optional\'')
def build_data():
"""Build the data frame."""
data = """
item width height available value color
k1 20 4 2 338.984 blue
k2 12 17 6 849.246 orange
k3 20 12 2 524.022 green
k4 16 7 9 263.303 red
k5 3 6 3 113.436 purple
k6 13 5 3 551.072 brown
k7 4 7 6 86.166 pink
k8 6 18 8 755.094 grey
k9 14 2 7 223.516 olive
k10 9 11 5 369.560 cyan
"""
data = pd.read_table(io.StringIO(data), sep=r'\s+')
print('Input data')
print(data)
max_height = 20
max_width = 30
print(f'Container max_width:{max_width} max_height:{max_height}')
print(f'#Items: {len(data.index)}')
return (data, max_height, max_width)
def solve_with_duplicate_items(data, max_height, max_width):
"""Solve the problem by building 2 items (rotated or not) for each item."""
# Derived data (expanded to individual items).
data_widths = data['width'].to_numpy()
data_heights = data['height'].to_numpy()
data_availability = data['available'].to_numpy()
data_values = data['value'].to_numpy()
# Non duplicated items data.
base_item_widths = np.repeat(data_widths, data_availability)
base_item_heights = np.repeat(data_heights, data_availability)
base_item_values = np.repeat(data_values, data_availability)
num_data_items = len(base_item_values)
# Create rotated items by duplicating.
item_widths = np.concatenate((base_item_widths, base_item_heights))
item_heights = np.concatenate((base_item_heights, base_item_widths))
item_values = np.concatenate((base_item_values, base_item_values))
num_items = len(item_values)
# OR-Tools model
model = cp_model.CpModel()
# Variables
x_starts = []
x_ends = []
y_starts = []
y_ends = []
is_used = []
x_intervals = []
y_intervals = []
for i in range(num_items):
## Is the item used?
is_used.append(model.NewBoolVar(f'is_used{i}'))
## Item coordinates.
x_starts.append(model.NewIntVar(0, max_width, f'x_start{i}'))
x_ends.append(model.NewIntVar(0, max_width, f'x_end{i}'))
y_starts.append(model.NewIntVar(0, max_height, f'y_start{i}'))
y_ends.append(model.NewIntVar(0, max_height, f'y_end{i}'))
## Interval variables.
x_intervals.append(
model.NewIntervalVar(x_starts[i], item_widths[i] * is_used[i],
x_ends[i], f'x_interval{i}'))
y_intervals.append(
model.NewIntervalVar(y_starts[i], item_heights[i] * is_used[i],
y_ends[i], f'y_interval{i}'))
# Constraints.
## Only one of non-rotated/rotated pair can be used.
for i in range(num_data_items):
model.Add(is_used[i] + is_used[i + num_data_items] <= 1)
## 2D no overlap.
model.AddNoOverlap2D(x_intervals, y_intervals)
## Objective.
model.Maximize(cp_model.LinearExpr.WeightedSum(is_used, item_values))
# Output proto to file.
if FLAGS.output_proto:
print('Writing proto to %s' % FLAGS.output_proto)
with open(FLAGS.output_proto, 'w') as text_file:
text_file.write(str(model))
# Solve model.
solver = cp_model.CpSolver()
if FLAGS.params:
text_format.Parse(FLAGS.params, solver.parameters)
status = solver.Solve(model)
# Report solution.
if status == cp_model.OPTIMAL:
used = {i for i in range(num_items) if solver.BooleanValue(is_used[i])}
data = pd.DataFrame({
'x_start': [solver.Value(x_starts[i]) for i in used],
'y_start': [solver.Value(y_starts[i]) for i in used],
'item_width': [item_widths[i] for i in used],
'item_height': [item_heights[i] for i in used],
'x_end': [solver.Value(x_ends[i]) for i in used],
'y_end': [solver.Value(y_ends[i]) for i in used],
'item_value': [item_values[i] for i in used]
})
print(data)
def solve_with_duplicate_optional_items(data, max_height, max_width):
"""Solve the problem by building 2 optional items (rotated or not) for each item."""
# Derived data (expanded to individual items).
data_widths = data['width'].to_numpy()
data_heights = data['height'].to_numpy()
data_availability = data['available'].to_numpy()
data_values = data['value'].to_numpy()
# Non duplicated items data.
base_item_widths = np.repeat(data_widths, data_availability)
base_item_heights = np.repeat(data_heights, data_availability)
base_item_values = np.repeat(data_values, data_availability)
num_data_items = len(base_item_values)
# Create rotated items by duplicating.
item_widths = np.concatenate((base_item_widths, base_item_heights))
item_heights = np.concatenate((base_item_heights, base_item_widths))
item_values = np.concatenate((base_item_values, base_item_values))
num_items = len(item_values)
# OR-Tools model
model = cp_model.CpModel()
# Variables
x_starts = []
y_starts = []
is_used = []
x_intervals = []
y_intervals = []
for i in range(num_items):
## Is the item used?
is_used.append(model.NewBoolVar(f'is_used{i}'))
## Item coordinates.
x_starts.append(
model.NewIntVar(0, max_width - int(item_widths[i]), f'x_start{i}'))
y_starts.append(
model.NewIntVar(0, max_height - int(item_heights[i]),
f'y_start{i}'))
## Interval variables.
x_intervals.append(
model.NewOptionalFixedSizeIntervalVar(x_starts[i], item_widths[i],
is_used[i], f'x_interval{i}'))
y_intervals.append(
model.NewOptionalFixedSizeIntervalVar(y_starts[i], item_heights[i],
is_used[i], f'y_interval{i}'))
# Constraints.
## Only one of non-rotated/rotated pair can be used.
for i in range(num_data_items):
model.Add(is_used[i] + is_used[i + num_data_items] <= 1)
## 2D no overlap.
model.AddNoOverlap2D(x_intervals, y_intervals)
## Objective.
model.Maximize(cp_model.LinearExpr.WeightedSum(is_used, item_values))
# Output proto to file.
if FLAGS.output_proto:
print('Writing proto to %s' % FLAGS.output_proto)
with open(FLAGS.output_proto, 'w') as text_file:
text_file.write(str(model))
# Solve model.
solver = cp_model.CpSolver()
if FLAGS.params:
text_format.Parse(FLAGS.params, solver.parameters)
status = solver.Solve(model)
# Report solution.
if status == cp_model.OPTIMAL:
used = {i for i in range(num_items) if solver.BooleanValue(is_used[i])}
data = pd.DataFrame({
'x_start': [solver.Value(x_starts[i]) for i in used],
'y_start': [solver.Value(y_starts[i]) for i in used],
'item_width': [item_widths[i] for i in used],
'item_height': [item_heights[i] for i in used],
'x_end': [solver.Value(x_starts[i]) + item_widths[i] for i in used],
'y_end': [
solver.Value(y_starts[i]) + item_heights[i] for i in used
],
'item_value': [item_values[i] for i in used]
})
print(data)
def solve_with_rotations(data, max_height, max_width):
"""Solve the problem by rotating items."""
# Derived data (expanded to individual items).
data_widths = data['width'].to_numpy()
data_heights = data['height'].to_numpy()
data_availability = data['available'].to_numpy()
data_values = data['value'].to_numpy()
item_widths = np.repeat(data_widths, data_availability)
item_heights = np.repeat(data_heights, data_availability)
item_values = np.repeat(data_values, data_availability)
num_items = len(item_widths)
# OR-Tools model.
model = cp_model.CpModel()
# Coordinate variables for each rectangle.
x_starts = []
x_sizes = []
x_ends = []
y_starts = []
y_sizes = []
y_ends = []
x_intervals = []
y_intervals = []
for i in range(num_items):
sizes = [0, int(item_widths[i]), int(item_heights[i])]
# X coordinates.
x_starts.append(model.NewIntVar(0, max_width, f'x_start{i}'))
x_sizes.append(
model.NewIntVarFromDomain(cp_model.Domain.FromValues(sizes),
f'x_size{i}'))
x_ends.append(model.NewIntVar(0, max_width, f'x_end{i}'))
# Y coordinates.
y_starts.append(model.NewIntVar(0, max_height, f'y_start{i}'))
y_sizes.append(
model.NewIntVarFromDomain(cp_model.Domain.FromValues(sizes),
f'y_size{i}'))
y_ends.append(model.NewIntVar(0, max_height, f'y_end{i}'))
## Interval variables
x_intervals.append(
model.NewIntervalVar(x_starts[i], x_sizes[i], x_ends[i],
f'x_interval{i}'))
y_intervals.append(
model.NewIntervalVar(y_starts[i], y_sizes[i], y_ends[i],
f'y_interval{i}'))
# is_used[i] == True if and only if item i is selected.
is_used = []
# Constraints.
## for each item, decide is unselected, no_rotation, rotated.
for i in range(num_items):
not_selected = model.NewBoolVar(f'not_selected_{i}')
no_rotation = model.NewBoolVar(f'no_rotation_{i}')
rotated = model.NewBoolVar(f'rotated_{i}')
### Exactly one state must be chosen.
model.AddExactlyOne(not_selected, no_rotation, rotated)
### Define height and width according to the state.
dim1 = item_widths[i]
dim2 = item_heights[i]
model.Add(x_sizes[i] == 0).OnlyEnforceIf(not_selected)
model.Add(y_sizes[i] == 0).OnlyEnforceIf(not_selected)
model.Add(x_sizes[i] == dim1).OnlyEnforceIf(no_rotation)
model.Add(y_sizes[i] == dim2).OnlyEnforceIf(no_rotation)
model.Add(x_sizes[i] == dim2).OnlyEnforceIf(rotated)
model.Add(y_sizes[i] == dim1).OnlyEnforceIf(rotated)
is_used.append(not_selected.Not())
## 2D no overlap.
model.AddNoOverlap2D(x_intervals, y_intervals)
# Objective.
model.Maximize(cp_model.LinearExpr.WeightedSum(is_used, item_values))
# Output proto to file.
if FLAGS.output_proto:
print('Writing proto to %s' % FLAGS.output_proto)
with open(FLAGS.output_proto, 'w') as text_file:
text_file.write(str(model))
# Solve model.
solver = cp_model.CpSolver()
if FLAGS.params:
text_format.Parse(FLAGS.params, solver.parameters)
status = solver.Solve(model)
# Report solution.
if status == cp_model.OPTIMAL:
used = {i for i in range(num_items) if solver.BooleanValue(is_used[i])}
data = pd.DataFrame({
'x_start': [solver.Value(x_starts[i]) for i in used],
'y_start': [solver.Value(y_starts[i]) for i in used],
'item_width': [solver.Value(x_sizes[i]) for i in used],
'item_height': [solver.Value(y_sizes[i]) for i in used],
'x_end': [solver.Value(x_ends[i]) for i in used],
'y_end': [solver.Value(y_ends[i]) for i in used],
'item_value': [item_values[i] for i in used]
})
print(data)
def solve_knapsack(model):
"""Solve the problem with all models."""
data, max_height, max_width = build_data()
if model == 'duplicate':
solve_with_duplicate_items(data, max_height, max_width)
elif model == 'optional':
solve_with_duplicate_optional_items(data, max_height, max_width)
else:
solve_with_rotations(data, max_height, max_width)
def main(_=None):
solve_knapsack(FLAGS.model)
if __name__ == '__main__':
app.run(main)