forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbop_ls.cc
990 lines (872 loc) · 37.3 KB
/
bop_ls.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/bop/bop_ls.h"
#include <algorithm>
#include <array>
#include <cstdint>
#include <limits>
#include <memory>
#include <string>
#include <vector>
#include "absl/memory/memory.h"
#include "absl/strings/str_format.h"
#include "ortools/base/strong_vector.h"
#include "ortools/bop/bop_util.h"
#include "ortools/sat/boolean_problem.h"
namespace operations_research {
namespace bop {
using ::operations_research::sat::LinearBooleanConstraint;
using ::operations_research::sat::LinearBooleanProblem;
using ::operations_research::sat::LinearObjective;
//------------------------------------------------------------------------------
// LocalSearchOptimizer
//------------------------------------------------------------------------------
LocalSearchOptimizer::LocalSearchOptimizer(const std::string& name,
int max_num_decisions,
absl::BitGenRef random,
sat::SatSolver* sat_propagator)
: BopOptimizerBase(name),
state_update_stamp_(ProblemState::kInitialStampValue),
max_num_decisions_(max_num_decisions),
sat_wrapper_(sat_propagator),
assignment_iterator_(),
random_(random) {}
LocalSearchOptimizer::~LocalSearchOptimizer() {}
bool LocalSearchOptimizer::ShouldBeRun(
const ProblemState& problem_state) const {
return problem_state.solution().IsFeasible();
}
BopOptimizerBase::Status LocalSearchOptimizer::Optimize(
const BopParameters& parameters, const ProblemState& problem_state,
LearnedInfo* learned_info, TimeLimit* time_limit) {
CHECK(learned_info != nullptr);
CHECK(time_limit != nullptr);
learned_info->Clear();
if (assignment_iterator_ == nullptr) {
assignment_iterator_ = std::make_unique<LocalSearchAssignmentIterator>(
problem_state, max_num_decisions_,
parameters.max_num_broken_constraints_in_ls(), random_, &sat_wrapper_);
}
if (state_update_stamp_ != problem_state.update_stamp()) {
// We have a new problem_state.
state_update_stamp_ = problem_state.update_stamp();
assignment_iterator_->Synchronize(problem_state);
}
assignment_iterator_->SynchronizeSatWrapper();
double prev_deterministic_time = assignment_iterator_->deterministic_time();
assignment_iterator_->UseTranspositionTable(
parameters.use_transposition_table_in_ls());
assignment_iterator_->UsePotentialOneFlipRepairs(
parameters.use_potential_one_flip_repairs_in_ls());
int64_t num_assignments_to_explore =
parameters.max_number_of_explored_assignments_per_try_in_ls();
while (!time_limit->LimitReached() && num_assignments_to_explore > 0 &&
assignment_iterator_->NextAssignment()) {
time_limit->AdvanceDeterministicTime(
assignment_iterator_->deterministic_time() - prev_deterministic_time);
prev_deterministic_time = assignment_iterator_->deterministic_time();
--num_assignments_to_explore;
}
if (sat_wrapper_.IsModelUnsat()) {
// TODO(user): we do that all the time, return an UNSAT satus instead and
// do this only once.
return problem_state.solution().IsFeasible()
? BopOptimizerBase::OPTIMAL_SOLUTION_FOUND
: BopOptimizerBase::INFEASIBLE;
}
// TODO(user): properly abort when we found a new solution and then finished
// the ls? note that this is minor.
sat_wrapper_.ExtractLearnedInfo(learned_info);
if (assignment_iterator_->BetterSolutionHasBeenFound()) {
// TODO(user): simply use vector<bool> instead of a BopSolution internally.
learned_info->solution = assignment_iterator_->LastReferenceAssignment();
return BopOptimizerBase::SOLUTION_FOUND;
}
if (time_limit->LimitReached()) {
// The time limit is reached without finding a solution.
return BopOptimizerBase::LIMIT_REACHED;
}
if (num_assignments_to_explore <= 0) {
// Explore the remaining assignments in a future call to Optimize().
return BopOptimizerBase::CONTINUE;
}
// All assignments reachable in max_num_decisions_ or less have been explored,
// don't call optimize() with the same initial solution again.
return BopOptimizerBase::ABORT;
}
//------------------------------------------------------------------------------
// BacktrackableIntegerSet
//------------------------------------------------------------------------------
template <typename IntType>
void BacktrackableIntegerSet<IntType>::ClearAndResize(IntType n) {
size_ = 0;
saved_sizes_.clear();
saved_stack_sizes_.clear();
stack_.clear();
in_stack_.assign(n.value(), false);
}
template <typename IntType>
void BacktrackableIntegerSet<IntType>::ChangeState(IntType i,
bool should_be_inside) {
size_ += should_be_inside ? 1 : -1;
if (!in_stack_[i.value()]) {
in_stack_[i.value()] = true;
stack_.push_back(i);
}
}
template <typename IntType>
void BacktrackableIntegerSet<IntType>::AddBacktrackingLevel() {
saved_stack_sizes_.push_back(stack_.size());
saved_sizes_.push_back(size_);
}
template <typename IntType>
void BacktrackableIntegerSet<IntType>::BacktrackOneLevel() {
if (saved_stack_sizes_.empty()) {
BacktrackAll();
} else {
for (int i = saved_stack_sizes_.back(); i < stack_.size(); ++i) {
in_stack_[stack_[i].value()] = false;
}
stack_.resize(saved_stack_sizes_.back());
saved_stack_sizes_.pop_back();
size_ = saved_sizes_.back();
saved_sizes_.pop_back();
}
}
template <typename IntType>
void BacktrackableIntegerSet<IntType>::BacktrackAll() {
for (int i = 0; i < stack_.size(); ++i) {
in_stack_[stack_[i].value()] = false;
}
stack_.clear();
saved_stack_sizes_.clear();
size_ = 0;
saved_sizes_.clear();
}
// Explicit instantiation of BacktrackableIntegerSet.
// TODO(user): move the code in a separate .h and -inl.h to avoid this.
template class BacktrackableIntegerSet<ConstraintIndex>;
//------------------------------------------------------------------------------
// AssignmentAndConstraintFeasibilityMaintainer
//------------------------------------------------------------------------------
AssignmentAndConstraintFeasibilityMaintainer::
AssignmentAndConstraintFeasibilityMaintainer(
const LinearBooleanProblem& problem, absl::BitGenRef random)
: by_variable_matrix_(problem.num_variables()),
constraint_lower_bounds_(),
constraint_upper_bounds_(),
assignment_(problem, "Assignment"),
reference_(problem, "Assignment"),
constraint_values_(),
flipped_var_trail_backtrack_levels_(),
flipped_var_trail_(),
constraint_set_hasher_(random) {
// Add the objective constraint as the first constraint.
const LinearObjective& objective = problem.objective();
CHECK_EQ(objective.literals_size(), objective.coefficients_size());
for (int i = 0; i < objective.literals_size(); ++i) {
CHECK_GT(objective.literals(i), 0);
CHECK_NE(objective.coefficients(i), 0);
const VariableIndex var(objective.literals(i) - 1);
const int64_t weight = objective.coefficients(i);
by_variable_matrix_[var].push_back(
ConstraintEntry(kObjectiveConstraint, weight));
}
constraint_lower_bounds_.push_back(std::numeric_limits<int64_t>::min());
constraint_values_.push_back(0);
constraint_upper_bounds_.push_back(std::numeric_limits<int64_t>::max());
// Add each constraint.
ConstraintIndex num_constraints_with_objective(1);
for (const LinearBooleanConstraint& constraint : problem.constraints()) {
if (constraint.literals_size() <= 2) {
// Infeasible binary constraints are automatically repaired by propagation
// (when possible). Then there are no needs to consider the binary
// constraints here, the propagation is delegated to the SAT propagator.
continue;
}
CHECK_EQ(constraint.literals_size(), constraint.coefficients_size());
for (int i = 0; i < constraint.literals_size(); ++i) {
const VariableIndex var(constraint.literals(i) - 1);
const int64_t weight = constraint.coefficients(i);
by_variable_matrix_[var].push_back(
ConstraintEntry(num_constraints_with_objective, weight));
}
constraint_lower_bounds_.push_back(
constraint.has_lower_bound() ? constraint.lower_bound()
: std::numeric_limits<int64_t>::min());
constraint_values_.push_back(0);
constraint_upper_bounds_.push_back(
constraint.has_upper_bound() ? constraint.upper_bound()
: std::numeric_limits<int64_t>::max());
++num_constraints_with_objective;
}
// Initialize infeasible_constraint_set_;
infeasible_constraint_set_.ClearAndResize(
ConstraintIndex(constraint_values_.size()));
CHECK_EQ(constraint_values_.size(), constraint_lower_bounds_.size());
CHECK_EQ(constraint_values_.size(), constraint_upper_bounds_.size());
}
const ConstraintIndex
AssignmentAndConstraintFeasibilityMaintainer::kObjectiveConstraint(0);
void AssignmentAndConstraintFeasibilityMaintainer::SetReferenceSolution(
const BopSolution& reference_solution) {
CHECK(reference_solution.IsFeasible());
infeasible_constraint_set_.BacktrackAll();
assignment_ = reference_solution;
reference_ = assignment_;
flipped_var_trail_backtrack_levels_.clear();
flipped_var_trail_.clear();
AddBacktrackingLevel(); // To handle initial propagation.
// Recompute the value of all constraints.
constraint_values_.assign(NumConstraints(), 0);
for (VariableIndex var(0); var < assignment_.Size(); ++var) {
if (assignment_.Value(var)) {
for (const ConstraintEntry& entry : by_variable_matrix_[var]) {
constraint_values_[entry.constraint] += entry.weight;
}
}
}
MakeObjectiveConstraintInfeasible(1);
}
void AssignmentAndConstraintFeasibilityMaintainer::
UseCurrentStateAsReference() {
for (const VariableIndex var : flipped_var_trail_) {
reference_.SetValue(var, assignment_.Value(var));
}
flipped_var_trail_.clear();
flipped_var_trail_backtrack_levels_.clear();
AddBacktrackingLevel(); // To handle initial propagation.
MakeObjectiveConstraintInfeasible(1);
}
void AssignmentAndConstraintFeasibilityMaintainer::
MakeObjectiveConstraintInfeasible(int delta) {
CHECK(IsFeasible());
CHECK(flipped_var_trail_.empty());
constraint_upper_bounds_[kObjectiveConstraint] =
constraint_values_[kObjectiveConstraint] - delta;
infeasible_constraint_set_.BacktrackAll();
infeasible_constraint_set_.ChangeState(kObjectiveConstraint, true);
infeasible_constraint_set_.AddBacktrackingLevel();
CHECK(!ConstraintIsFeasible(kObjectiveConstraint));
CHECK(!IsFeasible());
if (DEBUG_MODE) {
for (ConstraintIndex ct(1); ct < NumConstraints(); ++ct) {
CHECK(ConstraintIsFeasible(ct));
}
}
}
void AssignmentAndConstraintFeasibilityMaintainer::Assign(
const std::vector<sat::Literal>& literals) {
for (const sat::Literal& literal : literals) {
const VariableIndex var(literal.Variable().value());
const bool value = literal.IsPositive();
if (assignment_.Value(var) != value) {
flipped_var_trail_.push_back(var);
assignment_.SetValue(var, value);
for (const ConstraintEntry& entry : by_variable_matrix_[var]) {
const bool was_feasible = ConstraintIsFeasible(entry.constraint);
constraint_values_[entry.constraint] +=
value ? entry.weight : -entry.weight;
if (ConstraintIsFeasible(entry.constraint) != was_feasible) {
infeasible_constraint_set_.ChangeState(entry.constraint,
was_feasible);
}
}
}
}
}
void AssignmentAndConstraintFeasibilityMaintainer::AddBacktrackingLevel() {
flipped_var_trail_backtrack_levels_.push_back(flipped_var_trail_.size());
infeasible_constraint_set_.AddBacktrackingLevel();
}
void AssignmentAndConstraintFeasibilityMaintainer::BacktrackOneLevel() {
// Backtrack each literal of the last level.
for (int i = flipped_var_trail_backtrack_levels_.back();
i < flipped_var_trail_.size(); ++i) {
const VariableIndex var(flipped_var_trail_[i]);
const bool new_value = !assignment_.Value(var);
DCHECK_EQ(new_value, reference_.Value(var));
assignment_.SetValue(var, new_value);
for (const ConstraintEntry& entry : by_variable_matrix_[var]) {
constraint_values_[entry.constraint] +=
new_value ? entry.weight : -entry.weight;
}
}
flipped_var_trail_.resize(flipped_var_trail_backtrack_levels_.back());
flipped_var_trail_backtrack_levels_.pop_back();
infeasible_constraint_set_.BacktrackOneLevel();
}
void AssignmentAndConstraintFeasibilityMaintainer::BacktrackAll() {
while (!flipped_var_trail_backtrack_levels_.empty()) BacktrackOneLevel();
}
const std::vector<sat::Literal>&
AssignmentAndConstraintFeasibilityMaintainer::PotentialOneFlipRepairs() {
if (!constraint_set_hasher_.IsInitialized()) {
InitializeConstraintSetHasher();
}
// First, we compute the hash that a Literal should have in order to repair
// all the infeasible constraint (ignoring the objective).
//
// TODO(user): If this starts to show-up in a performance profile, we can
// easily maintain this hash incrementally.
uint64_t hash = 0;
for (const ConstraintIndex ci : PossiblyInfeasibleConstraints()) {
const int64_t value = ConstraintValue(ci);
if (value > ConstraintUpperBound(ci)) {
hash ^= constraint_set_hasher_.Hash(FromConstraintIndex(ci, false));
} else if (value < ConstraintLowerBound(ci)) {
hash ^= constraint_set_hasher_.Hash(FromConstraintIndex(ci, true));
}
}
tmp_potential_repairs_.clear();
const auto it = hash_to_potential_repairs_.find(hash);
if (it != hash_to_potential_repairs_.end()) {
for (const sat::Literal literal : it->second) {
// We only returns the flips.
if (assignment_.Value(VariableIndex(literal.Variable().value())) !=
literal.IsPositive()) {
tmp_potential_repairs_.push_back(literal);
}
}
}
return tmp_potential_repairs_;
}
std::string AssignmentAndConstraintFeasibilityMaintainer::DebugString() const {
std::string str;
str += "curr: ";
for (bool value : assignment_) {
str += value ? " 1 " : " 0 ";
}
str += "\nFlipped variables: ";
// TODO(user): show the backtrack levels.
for (const VariableIndex var : flipped_var_trail_) {
str += absl::StrFormat(" %d", var.value());
}
str += "\nmin curr max\n";
for (ConstraintIndex ct(0); ct < constraint_values_.size(); ++ct) {
if (constraint_lower_bounds_[ct] == std::numeric_limits<int64_t>::min()) {
str += absl::StrFormat("- %d %d\n", constraint_values_[ct],
constraint_upper_bounds_[ct]);
} else {
str +=
absl::StrFormat("%d %d %d\n", constraint_lower_bounds_[ct],
constraint_values_[ct], constraint_upper_bounds_[ct]);
}
}
return str;
}
void AssignmentAndConstraintFeasibilityMaintainer::
InitializeConstraintSetHasher() {
const int num_constraints_with_objective = constraint_upper_bounds_.size();
// Initialize the potential one flip repair. Note that we ignore the
// objective constraint completely so that we consider a repair even if the
// objective constraint is not infeasible.
constraint_set_hasher_.Initialize(2 * num_constraints_with_objective);
constraint_set_hasher_.IgnoreElement(
FromConstraintIndex(kObjectiveConstraint, true));
constraint_set_hasher_.IgnoreElement(
FromConstraintIndex(kObjectiveConstraint, false));
for (VariableIndex var(0); var < by_variable_matrix_.size(); ++var) {
// We add two entries, one for a positive flip (from false to true) and one
// for a negative flip (from true to false).
for (const bool flip_is_positive : {true, false}) {
uint64_t hash = 0;
for (const ConstraintEntry& entry : by_variable_matrix_[var]) {
const bool coeff_is_positive = entry.weight > 0;
hash ^= constraint_set_hasher_.Hash(FromConstraintIndex(
entry.constraint,
/*up=*/flip_is_positive ? coeff_is_positive : !coeff_is_positive));
}
hash_to_potential_repairs_[hash].push_back(
sat::Literal(sat::BooleanVariable(var.value()), flip_is_positive));
}
}
}
//------------------------------------------------------------------------------
// OneFlipConstraintRepairer
//------------------------------------------------------------------------------
OneFlipConstraintRepairer::OneFlipConstraintRepairer(
const LinearBooleanProblem& problem,
const AssignmentAndConstraintFeasibilityMaintainer& maintainer,
const sat::VariablesAssignment& sat_assignment)
: by_constraint_matrix_(problem.constraints_size() + 1),
maintainer_(maintainer),
sat_assignment_(sat_assignment) {
// Fill the by_constraint_matrix_.
//
// IMPORTANT: The order of the constraint needs to exactly match the one of
// the constraint in the AssignmentAndConstraintFeasibilityMaintainer.
// Add the objective constraint as the first constraint.
ConstraintIndex num_constraint(0);
const LinearObjective& objective = problem.objective();
CHECK_EQ(objective.literals_size(), objective.coefficients_size());
for (int i = 0; i < objective.literals_size(); ++i) {
CHECK_GT(objective.literals(i), 0);
CHECK_NE(objective.coefficients(i), 0);
const VariableIndex var(objective.literals(i) - 1);
const int64_t weight = objective.coefficients(i);
by_constraint_matrix_[num_constraint].push_back(
ConstraintTerm(var, weight));
}
// Add the non-binary problem constraints.
for (const LinearBooleanConstraint& constraint : problem.constraints()) {
if (constraint.literals_size() <= 2) {
// Infeasible binary constraints are automatically repaired by propagation
// (when possible). Then there are no needs to consider the binary
// constraints here, the propagation is delegated to the SAT propagator.
continue;
}
++num_constraint;
CHECK_EQ(constraint.literals_size(), constraint.coefficients_size());
for (int i = 0; i < constraint.literals_size(); ++i) {
const VariableIndex var(constraint.literals(i) - 1);
const int64_t weight = constraint.coefficients(i);
by_constraint_matrix_[num_constraint].push_back(
ConstraintTerm(var, weight));
}
}
SortTermsOfEachConstraints(problem.num_variables());
}
const ConstraintIndex OneFlipConstraintRepairer::kInvalidConstraint(-1);
const TermIndex OneFlipConstraintRepairer::kInitTerm(-1);
const TermIndex OneFlipConstraintRepairer::kInvalidTerm(-2);
ConstraintIndex OneFlipConstraintRepairer::ConstraintToRepair() const {
ConstraintIndex selected_ct = kInvalidConstraint;
int32_t selected_num_branches = std::numeric_limits<int32_t>::max();
int num_infeasible_constraints_left = maintainer_.NumInfeasibleConstraints();
// Optimization: We inspect the constraints in reverse order because the
// objective one will always be first (in our current code) and with some
// luck, we will break early instead of fully exploring it.
const std::vector<ConstraintIndex>& infeasible_constraints =
maintainer_.PossiblyInfeasibleConstraints();
for (int index = infeasible_constraints.size() - 1; index >= 0; --index) {
const ConstraintIndex& i = infeasible_constraints[index];
if (maintainer_.ConstraintIsFeasible(i)) continue;
--num_infeasible_constraints_left;
// Optimization: We return the only candidate without inspecting it.
// This is critical at the beginning of the search or later if the only
// candidate is the objective constraint which can be really long.
if (num_infeasible_constraints_left == 0 &&
selected_ct == kInvalidConstraint) {
return i;
}
const int64_t constraint_value = maintainer_.ConstraintValue(i);
const int64_t lb = maintainer_.ConstraintLowerBound(i);
const int64_t ub = maintainer_.ConstraintUpperBound(i);
int32_t num_branches = 0;
for (const ConstraintTerm& term : by_constraint_matrix_[i]) {
if (sat_assignment_.VariableIsAssigned(
sat::BooleanVariable(term.var.value()))) {
continue;
}
const int64_t new_value =
constraint_value +
(maintainer_.Assignment(term.var) ? -term.weight : term.weight);
if (new_value >= lb && new_value <= ub) {
++num_branches;
if (num_branches >= selected_num_branches) break;
}
}
// The constraint can't be repaired in one decision.
if (num_branches == 0) continue;
if (num_branches < selected_num_branches) {
selected_ct = i;
selected_num_branches = num_branches;
if (num_branches == 1) break;
}
}
return selected_ct;
}
TermIndex OneFlipConstraintRepairer::NextRepairingTerm(
ConstraintIndex ct_index, TermIndex init_term_index,
TermIndex start_term_index) const {
const absl::StrongVector<TermIndex, ConstraintTerm>& terms =
by_constraint_matrix_[ct_index];
const int64_t constraint_value = maintainer_.ConstraintValue(ct_index);
const int64_t lb = maintainer_.ConstraintLowerBound(ct_index);
const int64_t ub = maintainer_.ConstraintUpperBound(ct_index);
const TermIndex end_term_index(terms.size() + init_term_index + 1);
for (TermIndex loop_term_index(
start_term_index + 1 +
(start_term_index < init_term_index ? terms.size() : 0));
loop_term_index < end_term_index; ++loop_term_index) {
const TermIndex term_index(loop_term_index % terms.size());
const ConstraintTerm term = terms[term_index];
if (sat_assignment_.VariableIsAssigned(
sat::BooleanVariable(term.var.value()))) {
continue;
}
const int64_t new_value =
constraint_value +
(maintainer_.Assignment(term.var) ? -term.weight : term.weight);
if (new_value >= lb && new_value <= ub) {
return term_index;
}
}
return kInvalidTerm;
}
bool OneFlipConstraintRepairer::RepairIsValid(ConstraintIndex ct_index,
TermIndex term_index) const {
if (maintainer_.ConstraintIsFeasible(ct_index)) return false;
const ConstraintTerm term = by_constraint_matrix_[ct_index][term_index];
if (sat_assignment_.VariableIsAssigned(
sat::BooleanVariable(term.var.value()))) {
return false;
}
const int64_t new_value =
maintainer_.ConstraintValue(ct_index) +
(maintainer_.Assignment(term.var) ? -term.weight : term.weight);
const int64_t lb = maintainer_.ConstraintLowerBound(ct_index);
const int64_t ub = maintainer_.ConstraintUpperBound(ct_index);
return (new_value >= lb && new_value <= ub);
}
sat::Literal OneFlipConstraintRepairer::GetFlip(ConstraintIndex ct_index,
TermIndex term_index) const {
const ConstraintTerm term = by_constraint_matrix_[ct_index][term_index];
const bool value = maintainer_.Assignment(term.var);
return sat::Literal(sat::BooleanVariable(term.var.value()), !value);
}
void OneFlipConstraintRepairer::SortTermsOfEachConstraints(int num_variables) {
absl::StrongVector<VariableIndex, int64_t> objective(num_variables, 0);
for (const ConstraintTerm& term :
by_constraint_matrix_[AssignmentAndConstraintFeasibilityMaintainer::
kObjectiveConstraint]) {
objective[term.var] = std::abs(term.weight);
}
for (absl::StrongVector<TermIndex, ConstraintTerm>& terms :
by_constraint_matrix_) {
std::sort(terms.begin(), terms.end(),
[&objective](const ConstraintTerm& a, const ConstraintTerm& b) {
return objective[a.var] > objective[b.var];
});
}
}
//------------------------------------------------------------------------------
// SatWrapper
//------------------------------------------------------------------------------
SatWrapper::SatWrapper(sat::SatSolver* sat_solver) : sat_solver_(sat_solver) {}
void SatWrapper::BacktrackAll() { sat_solver_->Backtrack(0); }
std::vector<sat::Literal> SatWrapper::FullSatTrail() const {
std::vector<sat::Literal> propagated_literals;
const sat::Trail& trail = sat_solver_->LiteralTrail();
for (int trail_index = 0; trail_index < trail.Index(); ++trail_index) {
propagated_literals.push_back(trail[trail_index]);
}
return propagated_literals;
}
int SatWrapper::ApplyDecision(sat::Literal decision_literal,
std::vector<sat::Literal>* propagated_literals) {
CHECK(!sat_solver_->Assignment().VariableIsAssigned(
decision_literal.Variable()));
CHECK(propagated_literals != nullptr);
propagated_literals->clear();
const int old_decision_level = sat_solver_->CurrentDecisionLevel();
const int new_trail_index =
sat_solver_->EnqueueDecisionAndBackjumpOnConflict(decision_literal);
if (sat_solver_->IsModelUnsat()) {
return old_decision_level + 1;
}
// Return the propagated literals, whenever there is a conflict or not.
// In case of conflict, these literals will have to be added to the last
// decision point after backtrack.
const sat::Trail& propagation_trail = sat_solver_->LiteralTrail();
for (int trail_index = new_trail_index;
trail_index < propagation_trail.Index(); ++trail_index) {
propagated_literals->push_back(propagation_trail[trail_index]);
}
return old_decision_level + 1 - sat_solver_->CurrentDecisionLevel();
}
void SatWrapper::BacktrackOneLevel() {
const int old_decision_level = sat_solver_->CurrentDecisionLevel();
if (old_decision_level > 0) {
sat_solver_->Backtrack(old_decision_level - 1);
}
}
void SatWrapper::ExtractLearnedInfo(LearnedInfo* info) {
bop::ExtractLearnedInfoFromSatSolver(sat_solver_, info);
}
double SatWrapper::deterministic_time() const {
return sat_solver_->deterministic_time();
}
//------------------------------------------------------------------------------
// LocalSearchAssignmentIterator
//------------------------------------------------------------------------------
LocalSearchAssignmentIterator::LocalSearchAssignmentIterator(
const ProblemState& problem_state, int max_num_decisions,
int max_num_broken_constraints, absl::BitGenRef random,
SatWrapper* sat_wrapper)
: max_num_decisions_(max_num_decisions),
max_num_broken_constraints_(max_num_broken_constraints),
maintainer_(problem_state.original_problem(), random),
sat_wrapper_(sat_wrapper),
repairer_(problem_state.original_problem(), maintainer_,
sat_wrapper->SatAssignment()),
search_nodes_(),
initial_term_index_(
problem_state.original_problem().constraints_size() + 1,
OneFlipConstraintRepairer::kInitTerm),
use_transposition_table_(false),
use_potential_one_flip_repairs_(false),
num_nodes_(0),
num_skipped_nodes_(0),
num_improvements_(0),
num_improvements_by_one_flip_repairs_(0),
num_inspected_one_flip_repairs_(0) {}
LocalSearchAssignmentIterator::~LocalSearchAssignmentIterator() {
VLOG(1) << "LS " << max_num_decisions_
<< "\n num improvements: " << num_improvements_
<< "\n num improvements with one flip repairs: "
<< num_improvements_by_one_flip_repairs_
<< "\n num inspected one flip repairs: "
<< num_inspected_one_flip_repairs_;
}
void LocalSearchAssignmentIterator::Synchronize(
const ProblemState& problem_state) {
better_solution_has_been_found_ = false;
maintainer_.SetReferenceSolution(problem_state.solution());
for (const SearchNode& node : search_nodes_) {
initial_term_index_[node.constraint] = node.term_index;
}
search_nodes_.clear();
transposition_table_.clear();
num_nodes_ = 0;
num_skipped_nodes_ = 0;
}
// In order to restore the synchronization from any state, we backtrack
// everything and retry to take the same decisions as before. We stop at the
// first one that can't be taken.
void LocalSearchAssignmentIterator::SynchronizeSatWrapper() {
CHECK_EQ(better_solution_has_been_found_, false);
const std::vector<SearchNode> copy = search_nodes_;
sat_wrapper_->BacktrackAll();
maintainer_.BacktrackAll();
// Note(user): at this stage, the sat trail contains the fixed variables.
// There will almost always be at the same value in the reference solution.
// However since the objective may be over-constrained in the sat_solver, it
// is possible that some variable where propagated to some other values.
maintainer_.Assign(sat_wrapper_->FullSatTrail());
search_nodes_.clear();
for (const SearchNode& node : copy) {
if (!repairer_.RepairIsValid(node.constraint, node.term_index)) break;
search_nodes_.push_back(node);
ApplyDecision(repairer_.GetFlip(node.constraint, node.term_index));
}
}
void LocalSearchAssignmentIterator::UseCurrentStateAsReference() {
better_solution_has_been_found_ = true;
maintainer_.UseCurrentStateAsReference();
sat_wrapper_->BacktrackAll();
// Note(user): Here, there should be no discrepancies between the fixed
// variable and the new reference, so there is no need to do:
// maintainer_.Assign(sat_wrapper_->FullSatTrail());
for (const SearchNode& node : search_nodes_) {
initial_term_index_[node.constraint] = node.term_index;
}
search_nodes_.clear();
transposition_table_.clear();
num_nodes_ = 0;
num_skipped_nodes_ = 0;
++num_improvements_;
}
bool LocalSearchAssignmentIterator::NextAssignment() {
if (sat_wrapper_->IsModelUnsat()) return false;
if (maintainer_.IsFeasible()) {
UseCurrentStateAsReference();
return true;
}
// We only look for potential one flip repairs if we reached the end of the
// LS tree. I tried to do that at every level, but it didn't change the
// result much on the set-partitionning example I was using.
//
// TODO(user): Perform more experiments with this.
if (use_potential_one_flip_repairs_ &&
search_nodes_.size() == max_num_decisions_) {
for (const sat::Literal literal : maintainer_.PotentialOneFlipRepairs()) {
if (sat_wrapper_->SatAssignment().VariableIsAssigned(
literal.Variable())) {
continue;
}
++num_inspected_one_flip_repairs_;
// Temporarily apply the potential repair and see if it worked!
ApplyDecision(literal);
if (maintainer_.IsFeasible()) {
num_improvements_by_one_flip_repairs_++;
UseCurrentStateAsReference();
return true;
}
maintainer_.BacktrackOneLevel();
sat_wrapper_->BacktrackOneLevel();
}
}
// If possible, go deeper, i.e. take one more decision.
if (!GoDeeper()) {
// If not, backtrack to the first node that still has untried way to fix
// its associated constraint. Update it to the next untried way.
Backtrack();
}
// All nodes have been explored.
if (search_nodes_.empty()) {
VLOG(1) << std::string(27, ' ') + "LS " << max_num_decisions_
<< " finished."
<< " #explored:" << num_nodes_
<< " #stored:" << transposition_table_.size()
<< " #skipped:" << num_skipped_nodes_;
return false;
}
// Apply the next decision, i.e. the literal of the flipped variable.
const SearchNode node = search_nodes_.back();
ApplyDecision(repairer_.GetFlip(node.constraint, node.term_index));
return true;
}
// TODO(user): The 1.2 multiplier is an approximation only based on the time
// spent in the SAT wrapper. So far experiments show a good
// correlation with real time, but we might want to be more
// accurate.
double LocalSearchAssignmentIterator::deterministic_time() const {
return sat_wrapper_->deterministic_time() * 1.2;
}
std::string LocalSearchAssignmentIterator::DebugString() const {
std::string str = "Search nodes:\n";
for (int i = 0; i < search_nodes_.size(); ++i) {
str += absl::StrFormat(" %d: %d %d\n", i,
search_nodes_[i].constraint.value(),
search_nodes_[i].term_index.value());
}
return str;
}
void LocalSearchAssignmentIterator::ApplyDecision(sat::Literal literal) {
++num_nodes_;
const int num_backtracks =
sat_wrapper_->ApplyDecision(literal, &tmp_propagated_literals_);
// Sync the maintainer with SAT.
if (num_backtracks == 0) {
maintainer_.AddBacktrackingLevel();
maintainer_.Assign(tmp_propagated_literals_);
} else {
CHECK_GT(num_backtracks, 0);
CHECK_LE(num_backtracks, search_nodes_.size());
// Only backtrack -1 decisions as the last one has not been pushed yet.
for (int i = 0; i < num_backtracks - 1; ++i) {
maintainer_.BacktrackOneLevel();
}
maintainer_.Assign(tmp_propagated_literals_);
search_nodes_.resize(search_nodes_.size() - num_backtracks);
}
}
void LocalSearchAssignmentIterator::InitializeTranspositionTableKey(
std::array<int32_t, kStoredMaxDecisions>* a) {
int i = 0;
for (const SearchNode& n : search_nodes_) {
// Negated because we already fliped this variable, so GetFlip() will
// returns the old value.
(*a)[i] = -repairer_.GetFlip(n.constraint, n.term_index).SignedValue();
++i;
}
// 'a' is not zero-initialized, so we need to complete it with zeros.
while (i < kStoredMaxDecisions) {
(*a)[i] = 0;
++i;
}
}
bool LocalSearchAssignmentIterator::NewStateIsInTranspositionTable(
sat::Literal l) {
if (search_nodes_.size() + 1 > kStoredMaxDecisions) return false;
// Fill the transposition table element, i.e the array 'a' of decisions.
std::array<int32_t, kStoredMaxDecisions> a;
InitializeTranspositionTableKey(&a);
a[search_nodes_.size()] = l.SignedValue();
std::sort(a.begin(), a.begin() + 1 + search_nodes_.size());
if (transposition_table_.find(a) == transposition_table_.end()) {
return false;
} else {
++num_skipped_nodes_;
return true;
}
}
void LocalSearchAssignmentIterator::InsertInTranspositionTable() {
// If there is more decision that kStoredMaxDecisions, do nothing.
if (search_nodes_.size() > kStoredMaxDecisions) return;
// Fill the transposition table element, i.e the array 'a' of decisions.
std::array<int32_t, kStoredMaxDecisions> a;
InitializeTranspositionTableKey(&a);
std::sort(a.begin(), a.begin() + search_nodes_.size());
transposition_table_.insert(a);
}
bool LocalSearchAssignmentIterator::EnqueueNextRepairingTermIfAny(
ConstraintIndex ct_to_repair, TermIndex term_index) {
if (term_index == initial_term_index_[ct_to_repair]) return false;
if (term_index == OneFlipConstraintRepairer::kInvalidTerm) {
term_index = initial_term_index_[ct_to_repair];
}
while (true) {
term_index = repairer_.NextRepairingTerm(
ct_to_repair, initial_term_index_[ct_to_repair], term_index);
if (term_index == OneFlipConstraintRepairer::kInvalidTerm) return false;
if (!use_transposition_table_ ||
!NewStateIsInTranspositionTable(
repairer_.GetFlip(ct_to_repair, term_index))) {
search_nodes_.push_back(SearchNode(ct_to_repair, term_index));
return true;
}
if (term_index == initial_term_index_[ct_to_repair]) return false;
}
}
bool LocalSearchAssignmentIterator::GoDeeper() {
// Can we add one more decision?
if (search_nodes_.size() >= max_num_decisions_) {
return false;
}
// Is the number of infeasible constraints reasonable?
//
// TODO(user): Make this parameters dynamic. We can either try lower value
// first and increase it later, or try to dynamically change it during the
// search. Another idea is to have instead a "max number of constraints that
// can be repaired in one decision" and to take into account the number of
// decisions left.
if (maintainer_.NumInfeasibleConstraints() > max_num_broken_constraints_) {
return false;
}
// Can we find a constraint that can be repaired in one decision?
const ConstraintIndex ct_to_repair = repairer_.ConstraintToRepair();
if (ct_to_repair == OneFlipConstraintRepairer::kInvalidConstraint) {
return false;
}
// Add the new decision.
//
// TODO(user): Store the last explored term index to not start from -1 each
// time. This will be very useful when a backtrack occurred due to the SAT
// propagator. Note however that this behavior is already enforced when we use
// the transposition table, since we will not explore again the branches
// already explored.
return EnqueueNextRepairingTermIfAny(ct_to_repair,
OneFlipConstraintRepairer::kInvalidTerm);
}
void LocalSearchAssignmentIterator::Backtrack() {
while (!search_nodes_.empty()) {
// We finished exploring this node. Store it in the transposition table so
// that the same decisions will not be explored again. Note that the SAT
// solver may have learned more the second time the exact same decisions are
// seen, but we assume that it is not worth exploring again.
if (use_transposition_table_) InsertInTranspositionTable();
const SearchNode last_node = search_nodes_.back();
search_nodes_.pop_back();
maintainer_.BacktrackOneLevel();
sat_wrapper_->BacktrackOneLevel();
if (EnqueueNextRepairingTermIfAny(last_node.constraint,
last_node.term_index)) {
return;
}
}
}
} // namespace bop
} // namespace operations_research