forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvrp_drop_nodes.py
executable file
·231 lines (209 loc) · 7.84 KB
/
vrp_drop_nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#!/usr/bin/env python3
# Copyright 2010-2022 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# [START program]
"""Capacited Vehicles Routing Problem (CVRP)."""
# [START import]
from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp
# [END import]
# [START data_model]
def create_data_model():
"""Stores the data for the problem."""
data = {}
data['distance_matrix'] = [
[
0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354,
468, 776, 662
],
[
548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674,
1016, 868, 1210
],
[
776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164,
1130, 788, 1552, 754
],
[
696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822,
1164, 560, 1358
],
[
582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708,
1050, 674, 1244
],
[
274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628,
514, 1050, 708
],
[
502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856,
514, 1278, 480
],
[
194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320,
662, 742, 856
],
[
308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662,
320, 1084, 514
],
[
194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388,
274, 810, 468
],
[
536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764,
730, 388, 1152, 354
],
[
502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114,
308, 650, 274, 844
],
[
388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194,
536, 388, 730
],
[
354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0,
342, 422, 536
],
[
468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536,
342, 0, 764, 194
],
[
776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274,
388, 422, 764, 0, 798
],
[
662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730,
536, 194, 798, 0
],
]
# [START demands_capacities]
data['demands'] = [0, 1, 1, 3, 6, 3, 6, 8, 8, 1, 2, 1, 2, 6, 6, 8, 8]
data['vehicle_capacities'] = [15, 15, 15, 15]
# [END demands_capacities]
data['num_vehicles'] = 4
data['depot'] = 0
return data
# [END data_model]
# [START solution_printer]
def print_solution(data, manager, routing, assignment):
"""Prints assignment on console."""
print(f'Objective: {assignment.ObjectiveValue()}')
# Display dropped nodes.
dropped_nodes = 'Dropped nodes:'
for node in range(routing.Size()):
if routing.IsStart(node) or routing.IsEnd(node):
continue
if assignment.Value(routing.NextVar(node)) == node:
dropped_nodes += ' {}'.format(manager.IndexToNode(node))
print(dropped_nodes)
# Display routes
total_distance = 0
total_load = 0
for vehicle_id in range(data['num_vehicles']):
index = routing.Start(vehicle_id)
plan_output = 'Route for vehicle {}:\n'.format(vehicle_id)
route_distance = 0
route_load = 0
while not routing.IsEnd(index):
node_index = manager.IndexToNode(index)
route_load += data['demands'][node_index]
plan_output += ' {0} Load({1}) -> '.format(node_index, route_load)
previous_index = index
index = assignment.Value(routing.NextVar(index))
route_distance += routing.GetArcCostForVehicle(
previous_index, index, vehicle_id)
plan_output += ' {0} Load({1})\n'.format(manager.IndexToNode(index),
route_load)
plan_output += 'Distance of the route: {}m\n'.format(route_distance)
plan_output += 'Load of the route: {}\n'.format(route_load)
print(plan_output)
total_distance += route_distance
total_load += route_load
print('Total Distance of all routes: {}m'.format(total_distance))
print('Total Load of all routes: {}'.format(total_load))
# [END solution_printer]
def main():
"""Solve the CVRP problem."""
# Instantiate the data problem.
# [START data]
data = create_data_model()
# [END data]
# Create the routing index manager.
# [START index_manager]
manager = pywrapcp.RoutingIndexManager(len(data['distance_matrix']),
data['num_vehicles'], data['depot'])
# [END index_manager]
# Create Routing Model.
# [START routing_model]
routing = pywrapcp.RoutingModel(manager)
# [END routing_model]
# Create and register a transit callback.
# [START transit_callback]
def distance_callback(from_index, to_index):
"""Returns the distance between the two nodes."""
# Convert from routing variable Index to distance matrix NodeIndex.
from_node = manager.IndexToNode(from_index)
to_node = manager.IndexToNode(to_index)
return data['distance_matrix'][from_node][to_node]
transit_callback_index = routing.RegisterTransitCallback(distance_callback)
# [END transit_callback]
# Define cost of each arc.
# [START arc_cost]
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
# [END arc_cost]
# Add Capacity constraint.
# [START capacity_constraint]
def demand_callback(from_index):
"""Returns the demand of the node."""
# Convert from routing variable Index to demands NodeIndex.
from_node = manager.IndexToNode(from_index)
return data['demands'][from_node]
demand_callback_index = routing.RegisterUnaryTransitCallback(
demand_callback)
routing.AddDimensionWithVehicleCapacity(
demand_callback_index,
0, # null capacity slack
data['vehicle_capacities'], # vehicle maximum capacities
True, # start cumul to zero
'Capacity')
# Allow to drop nodes.
penalty = 1000
for node in range(1, len(data['distance_matrix'])):
routing.AddDisjunction([manager.NodeToIndex(node)], penalty)
# [END capacity_constraint]
# Setting first solution heuristic.
# [START parameters]
search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.first_solution_strategy = (
routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)
search_parameters.local_search_metaheuristic = (
routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH)
search_parameters.time_limit.FromSeconds(1)
# [END parameters]
# Solve the problem.
# [START solve]
assignment = routing.SolveWithParameters(search_parameters)
# [END solve]
# Print solution on console.
# [START print_solution]
if assignment:
print_solution(data, manager, routing, assignment)
# [END print_solution]
if __name__ == '__main__':
main()
# [END program]