-
Notifications
You must be signed in to change notification settings - Fork 0
/
extract.py
56 lines (49 loc) · 2.03 KB
/
extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from atrader import *
from atrader.enums import *
import numpy as np
import pandas as pd
import datetime
import xgboost as xgb
import warnings
def init(context: Context):
set_backtest(initial_cash=1e6)
context.faclist = ['MktValue',
'PB'
'LFLO',
'LINEARREG_INTERCEPT',
'HT_TRENDLINE',
'KAMA'
'TVSTD6'
'MONEYFLOW20'
'OperatingProfitToTOR'
'TotalAssetGrowRate'
]
context.tarlist=get_code_list('hs300')
reg_factor(context.faclist)
reg_kdata(frequency='month', fre_num=1, adjust=False)
context.ratio = 0.9 #初始权重设为0.9
begin_date = '2016-03-31'
end_date = '2016-08-31'
context.cal=pd.Series(get_trading_days(market='sse', begin_date=begin_date, end_date=end_date))
# get_trading_days()以列表的形式获取2016-03-31到2018-03-31的交易日期(包含2018-03-31)
# len取其长度,作为后面获取factor的天数
context.days = len(get_trading_days(market='sse', begin_date=begin_date, end_date=end_date))
def on_data(context: Context):
i=1
# price
#price = get_reg_kdata(reg_idx=context.reg_kdata[0], target_indices=(), length=13, fill_up=True, df=True) #获取13个月的price
# factor
factor = get_reg_factor(reg_idx=context.reg_factor[0], target_indices=(), length=context.days, df=True)
factor.to_csv("10factor.csv")
#price.to_csv("price_6factor_test"+"i"+".csv")
i = i + 1
if __name__ == "__main__":
# 投资域
begin_date = '2016-03-31'
end_date = '2016-08-31'
cal=get_trading_days(market='sse', begin_date=begin_date, end_date=end_date)
warnings.filterwarnings("ignore")
start = datetime.datetime.now()
tarlist = get_code_list('hs300')
a = run_backtest('XGBoost',target_list=tarlist['code'].tolist(),file_path='.', begin_date=begin_date,
end_date=end_date,frequency='month', fq=1)