-
Notifications
You must be signed in to change notification settings - Fork 2
/
square_flight.py
192 lines (158 loc) · 6.25 KB
/
square_flight.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
'''
My implementation based on Udacity's backyard flyer project
Event Driven implementation of a UAV's "Draw A Square"
'''
import argparse
import time
from enum import Enum
import numpy as np
import matplotlib.pyplot as plt
from udacidrone import Drone
from udacidrone.connection import MavlinkConnection, WebSocketConnection # noqa: F401
from udacidrone.messaging import MsgID
class Phases(Enum):
MANUAL = 0
ARMING = 1
TAKEOFF = 2
WAYPOINT = 3
LANDING = 4
DISARMING = 5
class BackyardFlyer(Drone):
def __init__(self, connection):
super().__init__(connection)
self.target_position = np.array([0.0, 0.0, 0.0])
self.all_waypoints = []
self.in_mission = True
self.check_state = {}
# initial state
self.flight_phase = Phases.MANUAL
# list of logs
self.xlog = []
self.ylog = []
self.zlog = []
self.vxlog = []
self.vylog = []
self.vzlog = []
self.register_callback(MsgID.LOCAL_POSITION, self.local_position_callback)
self.register_callback(MsgID.LOCAL_VELOCITY, self.velocity_callback)
self.register_callback(MsgID.STATE, self.state_callback)
def local_position_callback(self):
self.xlog.append(self.local_position[0])
self.ylog.append(self.local_position[1])
self.zlog.append(-1 * self.local_position[2])
if self.flight_phase == Phases.TAKEOFF:
if -1.0 * self.local_position[2] > 0.95 * self.target_position[2]:
self.all_waypoints = self.calculate_box()
self.waypoint_transition()
if self.flight_phase == Phases.WAYPOINT:
if np.linalg.norm(self.target_position[0:2] - self.local_position[0:2]) < 1.0:
if (len(self.all_waypoints) > 0):
self.waypoint_transition()
else:
if (self.local_velocity[0] < 1.0 and self.local_velocity[1] < 1.0):
print("local position " + str(self.local_position))
self.landing_transition()
def velocity_callback(self):
self.vxlog.append(self.local_velocity[0])
self.vylog.append(self.local_velocity[1])
self.vzlog.append(-1 * self.local_velocity[2])
if self.flight_phase == Phases.LANDING:
if ((self.global_position[2] - self.global_home[2] < 0.1)) and abs(self.local_position[2] < 0.01):
self.disarming_transition()
def state_callback(self):
if not self.in_mission:
return
if self.flight_phase == Phases.MANUAL:
self.arming_transition()
elif self.flight_phase == Phases.ARMING:
if self.armed:
self.takeoff_transition()
elif self.flight_phase == Phases.DISARMING:
if not self.armed:
self.manual_transition()
def calculate_box(self):
waypoints = [
[10.0, 0.0, 3.0],
[10.0, 10.0, 3.0],
[0.0, 10.0, 3.0],
[0.0, 0.0, 3.0]
]
self.waypointlog_x = [0., 10., 10., 0., 0.]
self.waypointlog_y = [0., 0., 10., 10., 0.]
self.waypointlog_z = [0., 3., 3., 3., 3.]
return waypoints
def arming_transition(self):
print("arming transition")
self.take_control()
self.arm()
self.set_home_position(self.global_position[0],
self.global_position[1],
self.global_position[2])
self.flight_phase = Phases.ARMING
def takeoff_transition(self):
print("takeoff transition")
target_altitude = 3.0
self.target_position[2] = target_altitude
self.takeoff(target_altitude)
self.flight_phase = Phases.TAKEOFF
def waypoint_transition(self):
print("waypoint transition")
self.target_position = self.all_waypoints.pop(0)
print("target position " + str(self.target_position))
self.cmd_position(self.target_position[0], self.target_position[1], self.target_position[2], 0.0)
self.flight_phase = Phases.WAYPOINT
def landing_transition(self):
print("landing transition")
self.land()
self.flight_phase = Phases.LANDING
def disarming_transition(self):
print("disarm transition")
self.disarm()
self.flight_phase = Phases.DISARMING
def manual_transition(self):
print("manual transition")
self.release_control()
self.stop()
self.in_mission = False
self.flight_phase = Phases.MANUAL
def start(self):
print("Creating log file")
self.start_log("Logs", "NavLog.txt")
print("starting connection")
self.connection.start()
print("Closing log file")
self.stop_log()
def plot_positions(drone_object):
fig, axs = plt.subplots(3, sharex=True, sharey=True)
fig.suptitle("Position at each Callbacks")
axs[0].plot(drone_object.xlog, 'tab:red')
axs[0].plot(drone_object.waypointlog_x, color='blue')
axs[0].set_title("X Position")
axs[1].plot(drone_object.ylog, 'tab:red')
axs[1].plot(drone_object.waypointlog_y, color='blue')
axs[1].set_title("Y Position")
axs[2].plot(drone_object.zlog, 'tab:red')
axs[2].plot(drone_object.waypointlog_z, color='blue')
axs[2].set_title("Z Position")
def plot_velocities(drone_object):
fig, axs = plt.subplots(3, sharex=True)
fig.suptitle("Velocities at each Callbacks")
axs[0].plot(drone_object.vxlog, 'tab:orange')
axs[0].set_title("X Velocity")
axs[1].plot(drone_object.vylog, 'tab:green')
axs[1].set_title("Y Velocity")
axs[2].plot(drone_object.vzlog, 'tab:blue')
axs[2].set_title("Z Velocity")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--port', type=int, default=5760, help='Port number')
parser.add_argument('--host', type=str, default='127.0.0.1', help="host address, i.e. '127.0.0.1'")
args = parser.parse_args()
conn = MavlinkConnection('tcp:{0}:{1}'.format(args.host, args.port), threaded=False, PX4=False)
#conn = WebSocketConnection('ws://{0}:{1}'.format(args.host, args.port))
drone = BackyardFlyer(conn)
time.sleep(2)
drone.start()
plot_positions(drone)
plot_velocities(drone)
plt.show()