-
Notifications
You must be signed in to change notification settings - Fork 2
/
main.py
93 lines (70 loc) · 2.34 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Part 1 - Data Preprocessing
# Importing the libraries
# %%
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# %%
# Importing the dataset
dataset = pd.read_csv(r'.\data\Churn_Modelling.csv')
# %%
X = dataset.iloc[:, 3:13].values
y = dataset.iloc[:, 13].values
# %%
# Encoding categorical data
# Encoding the Independent Variable
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X_1 = LabelEncoder()
X[:, 1] = labelencoder_X_1.fit_transform(X[:, 1])
labelencoder_X_2 = LabelEncoder()
X[:, 2] = labelencoder_X_2.fit_transform(X[:, 2])
# %%
# Dummy variables
from sklearn.compose import ColumnTransformer
ct = ColumnTransformer([("Geography", OneHotEncoder(), [1])], remainder='passthrough')
X = ct.fit_transform(X)
# Avoid Dummy variable trap
X = X[:, 1:]
# %%
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# %%
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# %%
# Part 2 - Now let's make the ANN!
import keras
from keras.models import Sequential
from keras.layers import Dense
# Initialising the ANN
classifier = Sequential()
# Adding the input layer and the frist hidden layer
classifier.add(Dense(units=6, kernel_initializer='uniform', activation='relu', input_dim=11))
# Adding the second hidden layer
classifier.add(Dense(units=6, kernel_initializer='uniform', activation='relu'))
# Adding the output layer
classifier.add(Dense(units=1, kernel_initializer='uniform', activation='sigmoid'))
# Compiling the ANN
classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# %%
# Fitting the ANN to the Training set
classifier.fit(X_train, y_train, batch_size=10, epochs=25)
# %%
# Fitting classifier to the Training set
# Create your classifier here
# Predicting the Test set results
y_pred = classifier.predict(X_test)
y_pred = (y_pred > 0.5)
# %%
# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
cm = confusion_matrix(y_test, y_pred)
accuracy = accuracy_score(y_test, y_pred) * 100
print("The accuracy was {}%".format(accuracy))
# %%