forked from vsimkus/variational-gibbs-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainer_base.py
960 lines (871 loc) · 47.5 KB
/
trainer_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
import os
import sys
import time
from collections import OrderedDict, defaultdict
import scipy.io as sio
import numpy as np
import pytorch_lightning as pl
import torch
from jsonargparse import ArgumentParser
from cdi.data.frey_faces import FreyFacesDataset
from cdi.data.toy_set import ToyDataset
from cdi.data.emnist import EMNIST
from cdi.data.uci_gas import GasDataset
from cdi.data.uci_power import PowerDataset
from cdi.data.uci_hepmass import HEPMASSDataset
from cdi.data.uci_miniboone import MiniBooNEDataset
from cdi.data.uci_generated import GenDataset
from cdi.trainers.regression_fn_trainer import RegressionTrainer
from cdi.util.data.data_augmentation_dataset import DataAugmentation, \
collate_augmented_samples, \
DataAugmentationWithScheduler
from cdi.util.data.missing_data_provider import MissingDataProvider
from cdi.util.data.block_missingness_dataset import BlockMissingnessData
from cdi.util.data.fully_missing_filter_dataset import FullyMissingDataFilter
from cdi.util.mutable_subset import MutableSubset
from cdi.util.utils import construct_experiment_name, \
set_random
from cdi.util.stats_utils import load_statistics
from cdi.util.arg_utils import parse_bool, args_required_length
from cdi.util.utils import EpochScheduler
class TrainerBase(pl.LightningModule):
"""
Trainer base for all experiments.
Handles data creation and preparation,
and common arguments.
"""
def __init__(self, hparams):
super(TrainerBase, self).__init__()
self.hparams = hparams
# Set random seed before model initialisation
set_random(self.hparams.model_seed)
# For backward-compability
if (isinstance(self.hparams.data.num_imputed_copies, list)
and len(self.hparams.data.num_imputed_copies) != 0):
self.num_imputed_copies_scheduler = EpochScheduler(self,
self.hparams.data.num_imputed_copies_schedule,
self.hparams.data.num_imputed_copies)
else:
self.num_imputed_copies_scheduler = None
# For persisting generated missingness mechanisms
if self.hparams.data.miss_type in ('MAR', 'MNAR', 'NMAR'):
# If the model already knows the shapes - use them
# Necessary for leading a pretrained model
if hasattr(self.hparams.data, 'dataset_patterns_shape'):
patterns_shape = self.hparams.data.dataset_patterns_shape
rel_freqs_shape = self.hparams.data.dataset_pattern_rel_freqs_shape
weights_shape = self.hparams.data.dataset_pattern_weights_shape
balances_shape = self.hparams.data.dataset_pattern_balances_shape
else:
patterns_shape = (1, )
rel_freqs_shape = (1, )
weights_shape = (1, )
balances_shape = (1, )
self.dataset_patterns = torch.nn.Parameter(
data=torch.empty(*patterns_shape,
dtype=torch.bool),
requires_grad=False)
self.dataset_pattern_rel_freqs = torch.nn.Parameter(
data=torch.empty(*rel_freqs_shape,
dtype=torch.float),
requires_grad=False)
self.dataset_pattern_weights = torch.nn.Parameter(
data=torch.empty(*weights_shape,
dtype=torch.float),
requires_grad=False)
self.dataset_pattern_balances = torch.nn.Parameter(
data=torch.empty(*balances_shape,
dtype=torch.float),
requires_grad=False)
@staticmethod
def add_model_args(parent_parser):
# Add algorithm parameters
parser = ArgumentParser(parser_mode='jsonnet',
parents=[parent_parser],
add_help=False)
parser.add_argument('--model_seed',
type=int, default=20190508,
help=('Random seed for model initialisation '
'and model training.'))
parser.add_argument('--data_seeds',
type=int, nargs=3, # action=args_required_length(3, 4),
default=[20200325, 20200406, 20200407],
help=('Random seed for data initialisation. '
'First seed is for missingness mask '
'generation, second - for train/val split,'
' third - pre-imputation.'))
#'(optional) fourth - subsample training data seed.'))
# Data args
parser.add_argument('--data.dataset_root',
type=str, default='data',
help='Path to root of dataset.')
parser.add_argument('--data.augment_complete',
default=False, type=parse_bool,
help=('Whether to augment complete or not.'))
parser.add_argument('--data.num_imputed_copies',
type=int, nargs='+', default=[0],
help=('The number of copies to make '
'of the incomplete samples'))
parser.add_argument('--data.num_imputed_copies_schedule',
type=int, nargs='+', default=[0],
help=('A list of epochs when number of '
'chains should be changed.'))
parser.add_argument('--data.num_new_chain_imp_steps',
type=int, required=False,
help=('Number of new chain imputation chains, '
'when a chain is added.'))
parser.add_argument('--data.batch_size',
type=int, required=True,
help=('Batch size'))
parser.add_argument('--data.dataset',
type=str, help='Dataset name.',
choices=['emnist_balanced',
'fa_frey_processed',
'fa_frey_large_processed',
'fcvae_frey_processed',
'fcvae_frey_trunc_processed',
'fcvae_frey_large_processed',
'fa_frey_trunc_processed',
'frey_faces_processed',
'frey_faces_not_processed',
'toy_set',
'toy_set2',
'toy_set3',
'uci_power', 'uci_gas', 'uci_hepmass', 'uci_miniboone',
'uci_gas_gen'])
parser.add_argument('--data.total_miss',
type=float, required=True,
help='Missingness fraction in dataset.')
parser.add_argument('--data.miss_type',
type=str, required=True,
help='Missingness type in dataset.',
choices=['MCAR', 'MAR', 'MNAR'])
parser.add_argument('--data.max_patterns',
type=int, required=False,
help=('Maximum number of patterns to generate for '
'`MCAR`, `MAR`, `MNAR` mechanisms.'))
parser.add_argument('--data.filter_fully_missing',
type=parse_bool, required=True,
help=('Whether fully-missing samples should '
'be removed from the data. Removing '
'MAR/MCAR data should be ok in any case,'
' but it is not ok in MNAR case. Also the '
'baseline models should benefit from this.'))
parser.add_argument('--data.pre_imputation',
type=str, default='mean',
choices=['mean',
'empirical_distribution_samples',
'true_values',
'zero',
'regression_prediction',
'preimputed_data',
'systematic_gibbs_sampling'], # This one is for var_cdi only
help=('The imputation type used before '
'training.'))
parser.add_argument('--data.reg_model_config',
type=str,
help=('Path to regression model config,'
' used for regression prediction '
'imputation'))
parser.add_argument('--data.preimp_data_model_name',
type=str,
help=('The name of the model, whose imputed data'
' we are going to use as preimputation.'
' Needed for `preimputed_data`.'))
parser.add_argument('--data.obs_zero_mean', type=parse_bool,
default=False,
help=('Whether to make observed data zero_mean.'))
parser.add_argument('--data.train_on_val', type=parse_bool,
default=False, help=('Use validation data as training.'))
parser.add_argument('--data.discard_fraction', type=float, required=False,
help=('Whether to subsample the training data and what fraction should be discarded.'))
return parser
# Setup
@staticmethod
def load_dataset(hparams, stage, path=None):
test = (stage == 'test')
if hparams.data.dataset == 'emnist_balanced':
print('Using EMNIST balanced.')
dataset = EMNIST(
root=hparams.data.dataset_root,
split='balanced',
train=not test)
elif hparams.data.dataset == 'fa_frey_processed':
print('Using preprocessed FA-Frey Faces.')
dataset = FreyFacesDataset(
root=hparams.data.dataset_root,
preprocess=True,
generated='FA',
filename=path,
test=test)
elif hparams.data.dataset == 'fa_frey_large_processed':
print('Using preprocessed FA-Frey Faces Large.')
dataset = FreyFacesDataset(
root=hparams.data.dataset_root,
preprocess=True,
generated='FA-large',
filename=path,
test=test)
elif hparams.data.dataset == 'fcvae_frey_processed':
print('Using preprocessed FCVAE-Frey Faces.')
dataset = FreyFacesDataset(
root=hparams.data.dataset_root,
preprocess=True,
generated='FC-VAE',
filename=path,
test=test)
elif hparams.data.dataset == 'fcvae_frey_trunc_processed':
print('Using preprocessed truncated FCVAE-Frey Faces.')
dataset = FreyFacesDataset(
root=hparams.data.dataset_root,
preprocess=True,
generated='FC-VAE',
truncate=True,
filename=path,
test=test)
elif hparams.data.dataset == 'fcvae_frey_large_processed':
print('Using preprocessed FCVAE-Frey Faces Large.')
dataset = FreyFacesDataset(
root=hparams.data.dataset_root,
preprocess=True,
generated='FC-VAE-large',
filename=path,
test=test)
elif hparams.data.dataset == 'fa_frey_trunc_processed':
print('Using preprocessed truncated FA-Frey Faces.')
dataset = FreyFacesDataset(
root=hparams.data.dataset_root,
preprocess=True,
truncate=True,
generated='FA',
filename=path,
test=test)
elif hparams.data.dataset == 'frey_faces_processed':
print('Using preprocessed Frey Faces.')
dataset = FreyFacesDataset(
root=hparams.data.dataset_root,
preprocess=True,
generated=None,
filename=path,
test=test)
elif hparams.data.dataset == 'frey_faces_not_processed':
print('Using *not* preprocessed Frey Faces.')
dataset = FreyFacesDataset(
root=hparams.data.dataset_root,
preprocess=False,
generated=None,
filename=path,
test=test)
elif hparams.data.dataset == 'toy_set':
dataset = ToyDataset(
root=hparams.data.dataset_root,
version=1,
filename=path,
test=test)
elif hparams.data.dataset == 'toy_set2':
dataset = ToyDataset(
root=hparams.data.dataset_root,
version=2,
filename=path,
test=test)
elif hparams.data.dataset == 'toy_set3':
dataset = ToyDataset(
root=hparams.data.dataset_root,
version=3,
filename=path,
test=test)
elif hparams.data.dataset == 'uci_power':
if stage != 'test':
train_dataset = PowerDataset(
root=hparams.data.dataset_root,
split='train')
val_dataset = PowerDataset(
root=hparams.data.dataset_root,
split='val')
dataset = (train_dataset, val_dataset)
else:
dataset = PowerDataset(
root=hparams.data.dataset_root,
split='test')
elif hparams.data.dataset == 'uci_gas':
if stage != 'test':
train_dataset = GasDataset(
root=hparams.data.dataset_root,
split='train')
val_dataset = GasDataset(
root=hparams.data.dataset_root,
split='val')
dataset = (train_dataset, val_dataset)
else:
dataset = GasDataset(
root=hparams.data.dataset_root,
split='test')
elif hparams.data.dataset == 'uci_hepmass':
if stage != 'test':
train_dataset = HEPMASSDataset(
root=hparams.data.dataset_root,
split='train')
val_dataset = HEPMASSDataset(
root=hparams.data.dataset_root,
split='val')
dataset = (train_dataset, val_dataset)
else:
dataset = HEPMASSDataset(
root=hparams.data.dataset_root,
split='test')
elif hparams.data.dataset == 'uci_miniboone':
if stage != 'test':
train_dataset = MiniBooNEDataset(
root=hparams.data.dataset_root,
split='train')
val_dataset = MiniBooNEDataset(
root=hparams.data.dataset_root,
split='val')
dataset = (train_dataset, val_dataset)
else:
dataset = MiniBooNEDataset(
root=hparams.data.dataset_root,
split='test')
elif hparams.data.dataset == 'uci_gas_gen':
if stage != 'test':
train_dataset = GenDataset(
root=hparams.data.dataset_root,
data='gas',
split='train')
val_dataset = GenDataset(
root=hparams.data.dataset_root,
data='gas',
split='val')
dataset = (train_dataset, val_dataset)
else:
dataset = GenDataset(
root=hparams.data.dataset_root,
data='gas',
split='test')
else:
print(('No such dataset available!',
f'`{hparams.data.dataset}`!'))
sys.exit()
return dataset
@staticmethod
def split_dataset(dataset, train_fraction=0.8):
# Train/Val split
dataset_size = len(dataset)
indices = np.random.permutation(range(dataset_size))
split = int(np.floor(train_fraction * dataset_size))
train_indices, val_indices = indices[:split], indices[split:]
train_dataset = MutableSubset(dataset, train_indices)
val_dataset = MutableSubset(dataset, val_indices)
return train_dataset, val_dataset
def initialise_dataset(self, hparams, dataset):
# TODO: refactor this method
pre_metrics = None
# Imputation method
init_start_time = time.time()
import cdi.common.imputation as imputation
if hparams.data.pre_imputation == 'true_values':
print('Using true values.')
elif hparams.data.pre_imputation == 'mean':
print('Performing mean imputation...')
imputation.impute_with_mean(dataset)
elif hparams.data.pre_imputation == 'empirical_distribution_samples':
print('Imputation with samples from empirical distribution.')
imputation.impute_with_empirical_distribution_sample(dataset)
elif hparams.data.pre_imputation == 'zero':
print('Imputation with zeros.')
X, M, I = dataset.get_all_data()[:3]
dataset[I] = X*M
elif hparams.data.pre_imputation == 'preimputed_data':
print('Setting data to the preimputed data.')
seed_stamp = construct_experiment_name(hparams).split('/')[-1]
preimputed_data_path = os.path.join(
'trained_models',
hparams.exp_group,
hparams.data.preimp_data_model_name,
seed_stamp,
'logs',
'tensors',
'train_data_final.npz')
print(f'Using data from {preimputed_data_path}.')
data = np.load(preimputed_data_path, allow_pickle=True)
X, M, I = dataset.get_all_data()[:3]
if X.shape == data['X'].shape:
assert (np.allclose(data['X']*data['M'], X*M)
and np.all(data['M'] == M)),\
('The preimputed data does not match the current data!')
# Set the data to the final values of another model's imputed data
dataset[I] = data['X']
X2, M2, _ = dataset.get_all_data()[:3]
assert np.allclose(X2, data['X']) and np.allclose(M2, data['M'])
else:
# Workaround for the case where MICE saved the imputations in the old format
X_load = np.zeros_like(X)
M_load = np.ones_like(M, dtype=M.dtype)
incomp_mask = (~M).any(axis=-1)
incomp_mask_load = (~data['M']).any(axis=-1)
X_load[incomp_mask] = data['X'][incomp_mask_load]
M_load[incomp_mask] = data['M'][incomp_mask_load]
X_load[~incomp_mask] = X[~incomp_mask]
assert (np.allclose(X_load*M_load, X*M)
and np.all(M_load == M)),\
('The preimputed data does not match the current data!')
X_load_full = data['X'][~incomp_mask_load]
assert np.allclose(X_load_full, X[~incomp_mask].reshape(X_load_full.shape[0], -1, X_load_full.shape[1],)[:, 0, :]),\
('Load check failed. (Checking whether the fully-observed data is same)')
# Set the data to the final values of another model's imputed data
dataset[I] = X_load
X2, M2, _ = dataset.get_all_data()[:3]
assert np.allclose(X2, X_load) and np.allclose(M2, M_load)
# Extract time metrics from the pre-trained model
pre_model_log_path = os.path.join(
'trained_models',
hparams.exp_group,
hparams.data.preimp_data_model_name,
seed_stamp,
'logs')
pre_metrics = {
'init_time': [],
'stage': []
}
for d in os.listdir(pre_model_log_path):
if d.startswith('summary'):
stats = load_statistics(pre_model_log_path, d)
pre_metrics['init_time'].append(np.sum(stats['train_time']))
pre_metrics['stage'].append('pre_train')
elif hparams.data.pre_imputation == 'regression_prediction':
print('Regression imputation.')
reg_argparser = ArgumentParser(parser_mode='jsonnet',
add_help=False,
print_config=None)
reg_argparser.add_argument('--experiment_name',
type=str, required=True,
help='Name of experiment.')
reg_argparser.add_argument('--exp_group',
type=str, required=True,
help='Experiment group.')
reg_argparser = TrainerBase.add_model_args(reg_argparser)
reg_argparser = pl.Trainer.add_argparse_args(reg_argparser)
reg_argparser = RegressionTrainer.add_regression_trainer_args(
reg_argparser)
reg_args = reg_argparser.parse_path(
hparams.data.reg_model_config)
# NOTE:
# Set seed to same as for this model, since these seeds were
# supposed to be used when training the regression model
reg_args.data_seeds = hparams.data_seeds
# Determine device for regression imputations
if hparams.gpus is not None:
device = torch.cuda.current_device()
else:
device = torch.device('cpu')
imputation.impute_with_regression_predictions(
dataset,
reg_args,
device,
exp_group=reg_args.exp_group,
repeat=1)
# Extract time metrics from the pre-trained model
exp_name = construct_experiment_name(reg_args)
pre_model_log_path = os.path.join(
'trained_models',
reg_args.exp_group,
exp_name,
'logs')
pre_metrics = {
'init_time': [],
'stage': []
}
for d in os.listdir(pre_model_log_path):
if d.startswith('summary'):
stats = load_statistics(pre_model_log_path, d)
pre_metrics['init_time'].append(np.sum(stats['train_time']))
pre_metrics['stage'].append('pre_train')
else:
print(f'No such imputation method {hparams.data.pre_imputation =}!')
sys.exit()
if pre_metrics is not None:
metrics = pre_metrics
metrics['init_time'].append(time.time() - init_start_time)
metrics['stage'].append('initialise_dataset')
else:
metrics = {
'init_time': [time.time() - init_start_time],
'stage': ['initialise_dataset']
}
return metrics
def setup(self, stage):
# Prepare the training and validation data
if stage == 'fit':
# Load the data
set_random(seed=self.hparams.data_seeds[0])
dataset = self.load_dataset(self.hparams, stage)
if isinstance(dataset, tuple):
train_dataset, val_dataset = dataset
# Add missingness
rng = torch.Generator()
rng.manual_seed(self.hparams.data_seeds[0])
train_dataset = MissingDataProvider(
train_dataset,
total_miss=self.hparams.data.total_miss,
miss_type=self.hparams.data.miss_type,
max_patterns=self.hparams.data.max_patterns if hasattr(self.hparams.data, 'max_patterns') else None,
should_fit_to_data=True,
rand_generator=rng)
# If we generate random patterns then persist them so that we
# can reuse them at test time
if self.hparams.data.miss_type in ('MAR', 'MNAR', 'NMAR'):
self.dataset_patterns.data = dataset.patterns
self.dataset_pattern_rel_freqs.data = dataset.rel_freqs
self.dataset_pattern_weights.data = dataset.weights
self.dataset_pattern_balances.data = dataset.balances
self.hparams.data.dataset_patterns_shape = dataset.patterns.shape
self.hparams.data.dataset_pattern_rel_freqs_shape = dataset.rel_freqs.shape
self.hparams.data.dataset_pattern_weights_shape = dataset.weights.shape
self.hparams.data.dataset_pattern_balances_shape = dataset.balances.shape
if self.hparams.data.miss_type in ('MAR', 'MNAR', 'NMAR'):
# Load the pattern from saved model
val_dataset = MissingDataProvider(
val_dataset,
total_miss=self.hparams.data.total_miss,
miss_type='patterns',
patterns=self.dataset_patterns,
rel_freqs=self.dataset_pattern_rel_freqs,
weights=self.dataset_pattern_weights,
balances=self.dataset_pattern_balances,
should_fit_to_data=False,
rand_generator=rng)
elif self.hparams.data.miss_type == 'MCAR':
val_dataset = MissingDataProvider(
val_dataset,
total_miss=self.hparams.data.total_miss,
miss_type=self.hparams.data.miss_type,
rand_generator=rng)
else:
# Add missingness
rng = torch.Generator()
rng.manual_seed(self.hparams.data_seeds[0])
dataset = MissingDataProvider(
dataset,
total_miss=self.hparams.data.total_miss,
miss_type=self.hparams.data.miss_type,
max_patterns=self.hparams.data.max_patterns if hasattr(self.hparams.data, 'max_patterns') else None,
should_fit_to_data=True,
rand_generator=rng)
# If we generate random patterns then persist them so that we
# can reuse them at test time
if self.hparams.data.miss_type in ('MAR', 'MNAR', 'NMAR'):
self.dataset_patterns.data = dataset.patterns
self.dataset_pattern_rel_freqs.data = dataset.rel_freqs
self.dataset_pattern_weights.data = dataset.weights
self.dataset_pattern_balances.data = dataset.balances
self.hparams.data.dataset_patterns_shape = dataset.patterns.shape
self.hparams.data.dataset_pattern_rel_freqs_shape = dataset.rel_freqs.shape
self.hparams.data.dataset_pattern_weights_shape = dataset.weights.shape
self.hparams.data.dataset_pattern_balances_shape = dataset.balances.shape
# Split the data
set_random(seed=self.hparams.data_seeds[1])
train_dataset, val_dataset = TrainerBase.split_dataset(dataset)
if hasattr(self.hparams.data, 'discard_fraction') and self.hparams.data.discard_fraction is not None:
# assert len(self.hparams.data_seeds) > 3,\
# 'The data seed for subsampling data should be provided!'
# Re-use the missingness seed for this
set_random(seed=self.hparams.data_seeds[0])
# Sub-sample the training data
train_dataset, _ = TrainerBase.split_dataset(train_dataset,
train_fraction=1-self.hparams.data.discard_fraction)
val_dataset, _ = TrainerBase.split_dataset(val_dataset,
train_fraction=1-self.hparams.data.discard_fraction)
print('Subsampled train dataset size:', len(train_dataset))
print('Subsampled val dataset size', len(val_dataset))
# Remove fully-missing samples if required
# NOTE: we could do this before the split in MissingDataProvider
# class, however, that would result in different splits for
# different seeds and hence data leakage.
if self.hparams.data.filter_fully_missing:
train_dataset = FullyMissingDataFilter(train_dataset)
# val_dataset = FullyMissingDataFilter(val_dataset)
# Make training data zero-mean
if hasattr(self.hparams.data, 'obs_zero_mean') and self.hparams.data.obs_zero_mean:
X, M, I = train_dataset[:][:3]
M = M.cpu().numpy()
# Comp. observed mean
self.obs_mean = (X * M).sum(axis=0)/M.sum(axis=0).astype(np.float32)
# Make train data zero-mean
train_dataset[I] = X - self.obs_mean
# Make val. data zero-mean
X, M, I = val_dataset[:][:3]
val_dataset[I] = X - self.obs_mean
# Save the mean vector
if self.logger is not None:
self.logger.log_tensors(epoch=0, logname='obs_mean',
obs_mean=self.obs_mean)
if hasattr(self.hparams.data, 'train_on_val') and self.hparams.data.train_on_val:
train_dataset = val_dataset
if self.hparams.data.filter_fully_missing:
# Remove fully-missing
train_dataset = FullyMissingDataFilter(train_dataset)
# Augment data by making several copies of the original
# for multiple-imputation
if self.num_imputed_copies_scheduler is None:
if isinstance(self.hparams.data.num_imputed_copies, list):
num_copies = self.hparams.data.num_imputed_copies[0]
else:
num_copies = self.hparams.data.num_imputed_copies
self.train_dataset = DataAugmentation(
train_dataset,
num_copies,
augment_complete=hasattr(self.hparams.data, 'augment_complete') and self.hparams.data.augment_complete)
else:
self.train_dataset = DataAugmentationWithScheduler(
train_dataset,
self.num_imputed_copies_scheduler,
augment_complete=hasattr(self.hparams.data, 'augment_complete') and self.hparams.data.augment_complete)
self.val_dataset = val_dataset
# Initialise data
set_random(seed=self.hparams.data_seeds[2])
init_metrics = self.initialise_dataset(self.hparams,
self.train_dataset)
# TrainerBase.initialise_dataset(self.hparams, self.val_dataset)
if self.logger is not None and init_metrics is not None and not isinstance(self.logger, pl.loggers.TensorBoardLogger):
self.logger.log_initialisation_metric(init_metrics)
elif stage == 'test' and (hasattr(self.hparams, 'test')
and (hasattr(self.hparams.test, 'use_train_data')
and self.hparams.test.use_train_data)):
# Use train data for testings
self.setup(stage='fit')
self.test_dataset = self.train_dataset
# Prepare testing data
elif stage == 'test':
# Load test data
dataset = self.load_dataset(self.hparams, stage)
if self.hparams.test.generate_test_data:
generated_data = self.fa_model.generate_data(self.hparams.test.generate_test_data_size,
seed=self.hparams.test.test_seed)
exp = construct_experiment_name(self.hparams)
path = os.path.join('trained_models',
self.hparams.exp_group,
exp, 'evaluations', 'generated_data.mat')
if 'frey' in self.hparams.data.dataset:
if self.hparams.test.postprocess_generated_data:
generated_data = dataset.postprocess(generated_data)
data = {
"ff": generated_data.detach().numpy().T,
"seed": self.hparams.test.test_seed
}
sio.savemat(file_name=path, mdict=data)
# Load generated test data
dataset = self.load_dataset(self.hparams, stage,
os.path.join('../', path))
# Add missingness
rng = torch.Generator()
rng.manual_seed(self.hparams.test.test_seed)
if not hasattr(self.hparams.test, 'data') or self.hparams.test.data.miss_type is None:
if self.hparams.data.miss_type in ('MAR', 'MNAR', 'NMAR'):
# Load the pattern from saved model
dataset = MissingDataProvider(
dataset,
total_miss=self.hparams.data.total_miss,
miss_type='patterns',
patterns=self.dataset_patterns,
rel_freqs=self.dataset_pattern_rel_freqs,
weights=self.dataset_pattern_weights,
balances=self.dataset_pattern_balances,
should_fit_to_data=False,
rand_generator=rng)
elif self.hparams.data.miss_type == 'MCAR':
dataset = MissingDataProvider(
dataset,
total_miss=self.hparams.data.total_miss,
miss_type=self.hparams.data.miss_type,
rand_generator=rng)
elif hasattr(self.hparams.test, 'data') and self.hparams.test.data.miss_type in ('MAR', 'MNAR', 'NMAR'):
# Load the pattern from saved model
dataset = MissingDataProvider(
dataset,
total_miss=self.hparams.data.total_miss,
miss_type='patterns',
patterns=self.dataset_patterns,
rel_freqs=self.dataset_pattern_rel_freqs,
weights=self.dataset_pattern_weights,
balances=self.dataset_pattern_balances,
should_fit_to_data=False,
rand_generator=rng)
elif hasattr(self.hparams.test, 'data') and self.hparams.test.data.miss_type == 'MCAR':
dataset = MissingDataProvider(
dataset,
total_miss=self.hparams.data.total_miss,
miss_type=self.hparams.data.miss_type,
rand_generator=rng)
elif hasattr(self.hparams.test, 'data') and self.hparams.test.data.miss_type == 'block':
dataset = BlockMissingnessData(dataset,
width=self.hparams.test.data.width,
fraction_incomplete=0.95,
inverse=False,
top_left=self.hparams.test.data.top_left,
bottom_right=self.hparams.test.data.bottom_right)
elif hasattr(self.hparams.test, 'data') and self.hparams.test.data.miss_type == 'block-inverse':
dataset = BlockMissingnessData(dataset,
width=self.hparams.test.data.width,
fraction_incomplete=0.95,
inverse=True,
top_left=self.hparams.test.data.top_left,
bottom_right=self.hparams.test.data.bottom_right)
# # Remove fully-missing samples if required
# if self.hparams.data.test.filter_fully_missing:
# dataset = FullyMissingDataFilter(dataset)
# Make test data zero-mean
if hasattr(self.hparams.data, 'obs_zero_mean') and self.hparams.data.obs_zero_mean:
# Load the observed data mean from the training
obs_mean_path = os.path.join('trained_models',
self.hparams.exp_group,
construct_experiment_name(self.hparams),
'logs', 'tensors',
'obs_mean_0.npz')
self.obs_mean = np.load(obs_mean_path, allow_pickle=True)['obs_mean']
X, M, I = dataset[:][:3]
dataset[I] = X - self.obs_mean
# Augmentation of test set
dataset = DataAugmentation(dataset, self.hparams.test.num_imputed_copies,
augment_complete=hasattr(self.hparams.data, 'augment_complete') and self.hparams.data.augment_complete)
# Initialise data
if self.hparams.test.init_missing_data:
set_random(seed=self.hparams.test.test_seed)
self.initialise_dataset(self.hparams, dataset)
self.test_dataset = dataset
def train_dataloader(self):
return torch.utils.data.DataLoader(
self.train_dataset,
batch_size=self.hparams.data.batch_size,
collate_fn=collate_augmented_samples,
num_workers=2,
shuffle=True)
def val_dataloader(self):
return torch.utils.data.DataLoader(
self.val_dataset,
batch_size=self.hparams.data.batch_size,
# collate_fn=collate_augmented_samples,
num_workers=2,
shuffle=False)
def forward(self, X):
raise NotImplementedError
# Training
def get_progress_bar_dict(self):
# Override default progress_bar to remove experiment version number
progress_bar = super().get_progress_bar_dict()
if 'v_num' in progress_bar:
progress_bar.pop('v_num')
return progress_bar
# Hooks
def on_train_start(self):
# Called at the beginning of training before sanity check.
# Set random seed before training
set_random(self.hparams.model_seed)
def on_epoch_start(self):
# Called in the training loop at the very beginning of the epoch.
# Set train epoch start time
self.train_epoch_start_time = time.time()
def training_epoch_end(self, outputs):
# Called in the training loop at the end of the epoch
results = OrderedDict({
'log': {'train_time': time.time() - self.train_epoch_start_time},
'progress_bar': {}
})
outputs_avg = defaultdict(float)
for output in outputs:
for key, value in output['callback_metrics'].items():
if key == 'loss':
key = 'train_loss'
outputs_avg[key] += value
for key, sum_value in outputs_avg.items():
# For some metrics we want aggregate sum, not average.
if key in ('train_imp_time', 'train_imp_accepted', 'train_imp_tries'):
continue
outputs_avg[key] /= len(outputs)
results['log'] = {**results['log'], **outputs_avg}
results['progress_bar'] = {**results['progress_bar'], **outputs_avg}
return results
def on_sanity_check_start(self):
self.val_epoch_start_time = time.time()
def on_pre_performance_check(self):
# Called at the very beginning of the validation loop.
# Set validation epoch start time
self.val_epoch_start_time = time.time()
def validation_epoch_end(self, outputs):
# Called in the training loop at the end of the epoch
results = OrderedDict({
'log': {'val_time': time.time() - self.val_epoch_start_time,
'curr_epoch': self.current_epoch},
'progress_bar': {}
})
outputs_avg = defaultdict(float)
for output in outputs:
for key, value in output.items():
if key == 'loss':
key = 'val_loss'
outputs_avg[key] += value
for key, sum_value in outputs_avg.items():
# For some metrics we want aggregate sum, not average.
if key in ('total_nans', 'val_imp_time', 'val_imp_accepted', 'val_imp_tries'):
continue
outputs_avg[key] /= len(outputs)
results['log'] = {**results['log'], **outputs_avg}
results['progress_bar'] = {**results['progress_bar'], **outputs_avg}
return results
#
# Test
#
@staticmethod
def add_test_args(parent_parser):
parser = parent_parser
parser.add_argument('--test_seed',
type=int, required=True,
help=('The seed for the _test_ '
'experiment.'))
parser.add_argument('--use_train_data', default=False,
type=parse_bool, help='Use train data for testing')
parser.add_argument('--generate_test_data', default=False,
type=parse_bool, help=('Whether to generate test data from the density model.'))
parser.add_argument('--generate_test_data_size', default=None,
type=int, help=('Size of generated test data.'))
parser.add_argument('--postprocess_generated_data', default=True,
type=parse_bool, help=('Whether to apply any postprocessing to generated data.'))
parser.add_argument('--init_missing_data',
type=parse_bool, default=False,
help=('Whether to impute the missing values.'))
parser.add_argument('--batch_size', type=int,
default=None, help=('Defaults to batch size used in training.'))
parser.add_argument('--num_imputed_copies', type=int, default=1,
help=('Number of imputation chains for test data.'))
parser.add_argument('--data.miss_type',
type=str, required=False,
help='Missingness type in test dataset.',
choices=['MCAR', 'MAR', 'MNAR', 'block', 'block-inverse'])
parser.add_argument('--data.width',
type=int, required=False,
help='Width of the data in pixels.')
parser.add_argument('--data.top_left',
type=int, nargs=2, required=False,
help='Top-left corner of the missingess block.')
parser.add_argument('--data.bottom_right',
type=int, nargs=2, required=False,
help='Bottom-right corner of the missingess block.')
return parser
def test_dataloader(self):
# NOTE: Can also return a list of test dataloaders
batch_size = self.hparams.data.batch_size
if self.hparams.test.batch_size is not None:
batch_size = self.hparams.test.batch_size
return torch.utils.data.DataLoader(
self.test_dataset,
collate_fn=collate_augmented_samples,
batch_size=batch_size,
num_workers=1,
shuffle=False)
def test_step(self, batch, batch_idx):
raise NotImplementedError
def test_epoch_end(self, outputs):
raise NotImplementedError
class TestSetRandomCallback(pl.Callback):
def on_test_start(self, trainer, pl_module):
# Set random seed before testing
set_random(pl_module.hparams.test.test_seed)