Skip to content

Latest commit

 

History

History
37 lines (30 loc) · 1.3 KB

README.md

File metadata and controls

37 lines (30 loc) · 1.3 KB

Learning Word Relatedness over Time

Author: Guy Rosin (guyrosin@cs.technion.ac.il)

This repository provides the data and implementation of the paper:

Learning Word Relatedness over Time
Guy D. Rosin, Eytan Adar and Kira Radinsky
EMNLP 2017
https://arxiv.org/abs/1707.08081

Code

The main folder contains:

  1. code for creating word embeddings using word2vec, either from a single corpus (word2vec_model_alltime.py), or from a temporal corpus (models_builder.py)
  2. framework for running and evaluating various types of ML classifiers (classifier.py)
  3. a peak detection algorithm that we used (peak_detection.py)

search contains code for temporal query expansion, in particular:

  1. searching the New York Times archive, using Apache Solr, and evaluating search results (temporal_search.py)
  2. performing temporal query expansion. The query can be either a single entity (qe_single_entity.py) or multiple entities (qe_multiple_entities.py)

Data

  • Relations, in the format of: <entity1, entity2, start_year, end_year, relation_type>
  • Binary relations that were generated from the relations file, in the format of: <entity1, entity2, year, true/false>

Dependencies

  • Python 3.5
  • gensim
  • spacy
  • sklearn
  • numpy
  • scikit-learn
  • scipy
  • pysolr
  • unidecode
  • matplotlib
  • gensim