-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathbert_model.py
170 lines (157 loc) · 7.25 KB
/
bert_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import numpy as np
import torch
from tqdm.std import trange
import hf_utils
import utils
from train_tempobert import ModelArguments
from transformers import AutoModelForMaskedLM
cache_dir = "data/cache"
class BertModel:
def __init__(self, model_name_or_path=None, hf_pipeline=None, device=None) -> None:
if hf_pipeline:
self.model = hf_pipeline.model
self.tokenizer = hf_pipeline.tokenizer
self.device = self.model.device
self.pipeline = hf_pipeline
else:
model_args = ModelArguments(
model_name_or_path=model_name_or_path, cache_dir=cache_dir
)
self.model, self.tokenizer = hf_utils.load_pretrained_model(
model_args, AutoModelForMaskedLM, expect_times_in_model=False
)
if device is None:
# Use GPU if available
device = 0 if torch.cuda.is_available() else -1
self.device = torch.device("cpu" if device < 0 else f"cuda:{device}")
if self.device.type == "cuda":
self.model = self.model.to(self.device)
self.config = self.model.config
def __str__(self):
"""Return a short version of the model's name or path"""
return hf_utils.get_model_name(self.model.name_or_path)
def encode_sentences(self, input, time=None, batch_size=None, return_batch=False):
"""Returns embedding(s) for the given input
Args:
input: A single text or a list of texts.
time: A time point (str) or a list of time points.
Returns:
A tensor of embedding(s).
"""
# this returns logits instead of hidden states (possibly a bug in Transformers), so I'm using my own code below.
# result = self.extract_pipeline(input, time_id=time)
kwargs = {}
range_loop = (
trange(0, len(input), batch_size)
if batch_size and len(input) / batch_size > 5
else range(1)
)
for i in range_loop:
batch = input[i : i + batch_size] if batch_size else input
if isinstance(time, str):
batch_time = len(batch) * [time]
elif isinstance(time, list):
batch_time = time[i : i + batch_size] if batch_size else time
else:
batch_time = None
if batch_time is not None:
kwargs["time_id"] = batch_time
batch = self.tokenizer(
batch,
padding=True,
truncation=True,
# add_special_tokens=False, # uncomment to get only tokens, without [CLS] and [SEP]
return_tensors="pt",
**kwargs,
)
batch = batch.to(self.device)
with torch.no_grad():
model_output = self.model(**batch, output_hidden_states=True)
if return_batch:
yield batch, model_output
else:
yield model_output
if batch_size:
i += batch_size
else:
break
def embed_word(
self, input, word, time=None, batch_size=None, hidden_layers_number=1
):
"""Returns embedding(s) for the given word in the given input(s).
Args:
input: A single text or a list of texts.
word: A single word to embed.
time: A time point (str) or a list of time points.
Returns:
A tensor of embedding(s).
"""
if not hasattr(self.model.config, 'times'):
time = None # ignore the given time if the model is not temporal
batch_and_outputs = self.encode_sentences(
input, time, batch_size, return_batch=True
)
result = torch.as_tensor([], device=self.device)
# Note: remember that `result` will get bigger during the loop and will eventually contain the whole dataset,
# so in case of an OOM exception, I can put it in the CPU. (I checked, it's faster in the GPU)
if word in self.tokenizer.vocab:
word_vocab_index = self.tokenizer.vocab[word]
for batch, model_output in batch_and_outputs:
last_hidden_states = torch.sum(
torch.stack(model_output.hidden_states[-hidden_layers_number:]), 0
)
# Extract the token embedding for the target word
# Find the index of the target word in each sentence
all_indices = (batch.data["input_ids"] == word_vocab_index).nonzero(
as_tuple=False
)
# `all_indices` is a matrix where each row is [row_index, word_index]
sentence_indices = all_indices[:, 0]
indices = all_indices[:, 1]
# Select the embedding of the target word, in each sentence
vecs = last_hidden_states[sentence_indices, indices, :]
# vecs' shape is: (number of appearances of the word, emb_dim)
# assert vecs.shape == (batch_size, model.config.hidden_size)
if vecs.shape[0] == 1: # in case `input` is a single sentence
vecs = torch.squeeze(vecs)
result = torch.cat((result, vecs))
else:
subword_vocab_indices = self.tokenizer.encode(
word, add_special_tokens=False
)
for batch, model_output in batch_and_outputs:
last_hidden_states = torch.sum(
torch.stack(model_output.hidden_states[-hidden_layers_number:]), 0
)
input_ids_all = batch.data["input_ids"].cpu().numpy()
sent_to_tokens = {
sent_i: utils.search_sequence_numpy(
input_ids,
np.array(subword_vocab_indices),
)
for sent_i, input_ids in enumerate(input_ids_all)
}
all_indices = [
[sent, token]
for sent, tokens in sent_to_tokens.items()
for token in tokens
]
all_indices = torch.as_tensor(all_indices, device=self.device)
sentence_indices = all_indices[:, 0]
indices = all_indices[:, 1]
# Select the embedding of the target word, in each sentence
vecs = last_hidden_states[sentence_indices, indices, :]
# Take the average of the tokens of each word appearance
n = len(subword_vocab_indices)
assert vecs.shape[0] % n == 0
# add a dimension for `n`, then take the mean by it
# ref: https://stackoverflow.com/questions/15956309/averaging-over-every-n-elements-of-a-numpy-array
vecs = torch.mean(
vecs.reshape(vecs.shape[0] // n, vecs.shape[1], n), axis=-1
)
# vecs' shape is: (number of appearances of the word, emb_dim)
# assert vecs.shape == (batch_size, model.config.hidden_size)
if vecs.shape[0] == 1: # in case `input` is a single sentence
vecs = torch.squeeze(vecs)
result = torch.cat((result, vecs))
return result