-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_tempobert.py
529 lines (484 loc) · 18.7 KB
/
train_tempobert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
#!/usr/bin/env python
"""
Training script for temporal BERT model using temporal attention.
Based on https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_mlm.py
"""
import math
from dataclasses import dataclass, field
from datetime import datetime
from pathlib import Path
from typing import Optional
import datasets
from dotenv import load_dotenv
from loguru import logger
import data_utils
import hf_utils
from models.tempobert.modeling_tempobert import TempoBertForMaskedLM
from temporal_data_collator import DataCollatorForTimePrependedLanguageModeling
from temporal_text_dataset import TemporalText
from transformers import DataCollatorForLanguageModeling, Trainer, TrainingArguments
from transformers.hf_argparser import HfArgumentParser
from transformers.models.auto.configuration_auto import CONFIG_MAPPING
from transformers.models.auto.tokenization_auto import TOKENIZER_MAPPING
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": "The model checkpoint for weights initialization."
"Don't set if you want to train a model from scratch."
},
)
config_overrides: Optional[str] = field(
default=None,
metadata={
"help": "Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
},
)
config_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained config name or path if not the same as model_name"
},
)
tokenizer_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained tokenizer name or path if not the same as model_name"
},
)
cache_dir: Optional[str] = field(
default=None,
metadata={
"help": "Where do you want to store the pretrained models downloaded from huggingface.co"
},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={
"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."
},
)
freeze_layers: Optional[str] = field(
default=False,
metadata={
"help": "True to freeze all encoder layers, or a string specifying the layer numbers to freeze."
},
)
hidden_size: Optional[int] = field(
default=768,
metadata={"help": "Dimensionality of the encoder layers and the pooler layer."},
)
num_hidden_layers: Optional[int] = field(
default=12,
metadata={"help": "Number of hidden layers in the Transformer encoder."},
)
tokenizer: Optional[str] = field(
default='bert-base',
metadata={
"help": "Tokenizer name without case, e.g., `bert-base`. Use `cased_tokenizer` to specify the case."
},
)
gradient_checkpointing: Optional[bool] = field(
default=False,
metadata={
"help": "If True, use gradient checkpointing to save memory at the expense of slower backward pass."
},
)
time_embedding_type: Optional[str] = field(
default="temporal_attention",
metadata={
"help": "Time embedding type. Possible values: `prepend_token`, `temporal_attention`."
},
)
def __post_init__(self):
if self.config_overrides is not None and (
self.config_name is not None or self.model_name_or_path is not None
):
raise ValueError(
"--config_overrides can't be used in combination with --config_name or --model_name_or_path"
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default="temporal_text_dataset.py",
metadata={"help": "The name of the dataset to use (via the datasets library)."},
)
dataset_config_name: Optional[str] = field(
default=None,
metadata={
"help": "The configuration name of the dataset to use (via the datasets library)."
},
)
train_path: Optional[str] = field(
default=None, metadata={"help": "The input training data file or directory."}
)
validation_path: Optional[str] = field(
default=None,
metadata={
"help": "An optional input evaluation data file or directory to evaluate the perplexity on."
},
)
overwrite_cache: bool = field(
default=False,
metadata={"help": "Overwrite the cached training and evaluation sets"},
)
max_seq_length: Optional[int] = field(
default=None,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated."
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
mlm_probability: float = field(
default=0.15,
metadata={"help": "Ratio of tokens to mask for masked language modeling loss"},
)
time_mlm_probability: Optional[float] = field(
default=None,
metadata={
"help": "Ratio of time tokens to mask for masked language modeling loss (relevant in case of a time-prepended model). "
"If None, time tokens are occasionally masked, like any other token."
},
)
line_by_line: bool = field(
default=False,
metadata={
"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."
},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": "Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
},
)
times: Optional[str] = field(
default=None, metadata={"help": "List of time points for the model to use."}
)
words_for_vocab_file: Optional[str] = field(
default=None,
metadata={"help": "Text file containing words to add to the model vocabulary."},
)
corpus_name: Optional[str] = field(
default=None,
metadata={"help": "The name of the corpus (e.g., liverpool, semeval_eng)."},
)
def __post_init__(self):
if (
self.dataset_name is None
and self.train_path is None
and self.validation_path is None
):
raise ValueError(
"Need either a dataset name or a training/validation path."
)
def freeze_model_layers(model, freeze_layers_arg):
if freeze_layers_arg:
if isinstance(freeze_layers_arg, bool):
for layer in model.base_model.encoder.layer:
for param in layer.parameters():
param.requires_grad = False
elif isinstance(freeze_layers_arg, str):
layer_indexes = [int(x) for x in freeze_layers_arg.split(",")]
for layer_idx in layer_indexes:
for param in list(
model.base_model.encoder.layer[layer_idx].parameters()
):
param.requires_grad = False
def tokenize_dataset_line_by_line(
dataset,
data_args,
training_args,
tokenizer,
text_column_name,
column_names,
max_seq_length,
return_special_tokens_mask,
):
"""Tokenize each nonempty line."""
def _tokenize(examples, data_args, tokenizer, text_column_name):
padding = "max_length" if data_args.pad_to_max_length else False
return tokenizer(
examples[text_column_name],
examples['time'],
padding=padding,
truncation=True,
max_length=max_seq_length,
return_special_tokens_mask=return_special_tokens_mask,
)
def tokenize_function(examples):
# Remove empty lines
examples[text_column_name] = [
line for line in examples[text_column_name] if line and not line.isspace()
]
return _tokenize(examples, data_args, tokenizer, text_column_name)
with training_args.main_process_first(desc="dataset map tokenization"):
return dataset.map(
tokenize_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on dataset line_by_line",
)
def tokenize_dataset_concat(
dataset,
data_args,
training_args,
tokenizer,
text_column_name,
column_names,
max_seq_length,
return_special_tokens_mask,
):
"""Tokenize every text, then concatenate them together before splitting them in smaller parts."""
def tokenize_function(examples):
return tokenizer(
examples[text_column_name],
examples['time'],
return_special_tokens_mask=return_special_tokens_mask,
)
with training_args.main_process_first(desc="dataset map tokenization"):
tokenized_datasets = dataset.map(
tokenize_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on every text in dataset",
)
# Concatenate all texts from our dataset and generate chunks of max_seq_length
def group_texts(examples):
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs
if total_length >= max_seq_length:
total_length = (total_length // max_seq_length) * max_seq_length
# Split by chunks of max_len
result = {
k: [
t[i : i + max_seq_length]
for i in range(0, total_length, max_seq_length)
]
for k, t in concatenated_examples.items()
}
return result
# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
# remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
# might be slower to preprocess.
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
with training_args.main_process_first(desc="grouping texts together"):
return tokenized_datasets.map(
group_texts,
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
desc=f"Grouping texts in chunks of {max_seq_length}",
)
def load_data(
corpus_path,
data_args,
training_args,
model_args,
tokenizer,
):
dataset_files = data_utils.iterdir(corpus_path, suffix=".txt", to_str=True)
logger.info("Loading dataset files...")
dataset = datasets.load_dataset(
data_args.dataset_name,
data_files=dataset_files,
split="train", # Note the split is always labeled "train"
cache_dir=model_args.cache_dir,
)
logger.info(f"Loaded dataset of {dataset.num_rows:,} rows. Preprocessing...")
column_names = dataset.column_names
text_column_name = "text" if "text" in column_names else column_names[0]
if data_args.max_seq_length is None:
max_seq_length = tokenizer.model_max_length
if max_seq_length > 1024:
logger.warning(
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
"Picking 1024 instead."
)
max_seq_length = 1024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
# DataCollatorForLanguageModeling is more efficient when it receives the `special_tokens_mask`.
return_special_tokens_mask = True
if data_args.line_by_line:
tokenized_dataset = tokenize_dataset_line_by_line(
dataset,
data_args,
training_args,
tokenizer,
text_column_name,
column_names,
max_seq_length,
return_special_tokens_mask,
)
else:
tokenized_dataset = tokenize_dataset_concat(
dataset,
data_args,
training_args,
tokenizer,
text_column_name,
column_names,
max_seq_length,
return_special_tokens_mask,
)
return tokenized_dataset
def train_tempobert():
"""Main training function for temporal BERT"""
parser = HfArgumentParser(
(ModelArguments, DataTrainingArguments, TrainingArguments)
)
model_args, data_args, training_args, last_checkpoint = hf_utils.init_run(parser)
if (training_args.do_eval and not data_args.validation_path) or (
not training_args.do_eval and data_args.validation_path
):
logger.error(f"{training_args.do_eval=} but {data_args.validation_path=}")
exit()
dataset_files = data_utils.iterdir(data_args.train_path, suffix=".txt")
if data_args.times:
if ',' in data_args.times:
times = data_args.times.split(',')
elif '-' in data_args.times:
from_time, to_time = data_args.times.split('-')
times = list(map(str, range(from_time, to_time + 1)))
else:
times = [data_args.times]
else:
times = sorted([TemporalText.find_time(f.name) for f in dataset_files])
logger.info(f'Loaded {len(times)} time points from {data_args.train_path}.')
# Set the model and data collator classes
pad_to_multiple_of_8 = (
data_args.line_by_line
and training_args.fp16
and not data_args.pad_to_max_length
)
data_collator_cls = (
DataCollatorForTimePrependedLanguageModeling
if model_args.time_embedding_type.startswith("prepend_")
else DataCollatorForLanguageModeling
)
# Load the config, model, and tokenizer.
logger.info(f"Training from a pretrained {model_args.model_name_or_path} model")
model, tokenizer, config = hf_utils.load_pretrained_model(
model_args, data_args=data_args, return_config=True
)
# Convert all components to temporal
temporal_model_type = (
config.model_type
if config.model_type.startswith("tempo")
else f"tempo{config.model_type}"
)
temporal_config_class = CONFIG_MAPPING[temporal_model_type]
temporal_tokenizer_fast_class = TOKENIZER_MAPPING[temporal_config_class][1]
config = hf_utils.config_to_temporal(
config,
temporal_config_class,
times=times,
time_embedding_type=model_args.time_embedding_type,
)
tokenizer = temporal_tokenizer_fast_class.from_non_temporal(tokenizer, config)
model = TempoBertForMaskedLM.from_non_temporal(model, config)
if data_args.words_for_vocab_file:
tokens = Path(data_args.words_for_vocab_file).read_text().splitlines()
if tokenizer.do_lower_case:
tokens = [t.lower() for t in tokens]
num_added_toks = tokenizer.add_tokens(tokens)
logger.info(
f"Added {num_added_toks} tokens from {data_args.words_for_vocab_file} to the vocabulary"
)
# Necessary only if new words were introduced by the tokenizer
if model.config.vocab_size != len(tokenizer):
model.resize_token_embeddings(len(tokenizer))
train_dataset = load_data(
data_args.train_path,
data_args,
training_args,
model_args,
tokenizer,
)
eval_dataset = (
load_data(
data_args.validation_path,
data_args,
training_args,
model_args,
tokenizer,
)
if training_args.do_eval and data_args.validation_path
else None
)
# The data collator takes care of randomly masking tokens
kwargs = {}
if data_collator_cls == DataCollatorForTimePrependedLanguageModeling:
kwargs["different_time_mlm"] = data_args.time_mlm_probability is not None
kwargs["time_mlm_probability"] = data_args.time_mlm_probability
kwargs["time_tokens"] = [f"<{time}>" for time in times]
data_collator = data_collator_cls(
tokenizer=tokenizer,
mlm_probability=data_args.mlm_probability,
pad_to_multiple_of=8 if pad_to_multiple_of_8 else None,
**kwargs,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
data_collator=data_collator,
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
logger.info(f"Training... Output folder: {training_args.output_dir}")
start = datetime.now()
train_result = trainer.train(resume_from_checkpoint=checkpoint)
logger.info(f"Done training! Elapsed time: {datetime.now() - start}")
trainer.save_model()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
metrics["eval_samples"] = len(eval_dataset)
try:
perplexity = math.exp(metrics["eval_loss"])
except OverflowError:
perplexity = float("inf")
metrics["perplexity"] = perplexity
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if __name__ == "__main__":
load_dotenv()
train_tempobert()