Skip to content

Decoupled Graph Convolution Network for Inferring Substitutable and Complementary Items, CIKM 2020

Notifications You must be signed in to change notification settings

guyulongcs/CIKM2020_DecGCN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Decoupled Graph Convolution Network for Inferring Substitutable and Complementary Items (CIKM 2020)

DecGCN:

​ DecGCN is the code for our paper "Decoupled Graph Convolution Network for Inferring Substitutable and Complementary Items", which is published in CIKM 2020.

​ The code is also available at https://github.com/liuyiding1993/CIKM2020_DecGCN.

The proposed framework

Citation:

Please cite the following paper if you use the code in any way.

Code:

Preprocessing

  • Step1: Download meta data from https://nijianmo.github.io/amazon/index.html.
  • Step2: Put the meta data file in ./preprocessing/raw_data/.
  • Step3: Set the dataset name (i.e., $dataset) in run.sh, run preprocessing by cd preprocessing; sh run.sh.

The compressed data files (i.e., .dat files) will be put in ./euler_data/$dataset_name/.

Training

Example of training on Amazon Beauty dataset:

python run_loop.py --mode=train --data_dir=./euler_data/Beauty \
                   --max_id=114791 --sparse_feature_max_id=10,44,11178 \
                   --dim=128 --embedding_dim=16 --num_negs=5 --fanouts=5,5 \
                   --model=DecGCN --model_dir=ckpt --batch_size=512 \
                   --optimizer=adam --learning_rate=1e-4 --num_epochs=20 --log_steps=20

Parameters:

Name Type Description
mode enum(str) train, evaluate or save_embedding.
data_dir str directory of the specified dataset (e.g., ./euler_data/Beauty).
max_id int maximum node id, i.e., the number of nodes - 1.
sparse_feature_max_id list(int) list of maximum feature id.
dim int dimensionality of hidden layers.
embedding_dim int dimensionality of feature embeddings.
num_negs int number of negative samples during training.
fanouts list(int) numbers of sampled neighbors.
model str model to be trained (e.g., DecGCN).
model_dir str directory to save/load a model.
batch_size int training batch size.
optimizer enum(str) training optimizer (e.g., adam or sgd).
learning_rate float learning rate for training.
num_epochs int number of passes over the training data.
log_steps int number of batches to print the log info.

About

Decoupled Graph Convolution Network for Inferring Substitutable and Complementary Items, CIKM 2020

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published