-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGaryRobot.ino
351 lines (288 loc) · 8.64 KB
/
GaryRobot.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
#include <Servo.h>
#include <Wire.h>
#include <LiquidCrystal_I2C.h>
#define SENSOR_TRIG_PIN 2
#define SENSOR_ECHO_PIN 3
#define SENSOR_MIN_DIST 30
/*********************************************************
* CONTROL VARIABLES
*********************************************************/
// Normal operation: debug=0, immobile = 0, wait = 1
int debug = 1;
int immobile = 0;
int wait = 1;
// motor stuff:
int E1 = 5; //M1 Speed Control
int E2 = 6; //M2 Speed Control
int M1 = 4; //M1 Direction Control
int M2 = 7; //M1 Direction Control
char forward_right_motor = 180; // Speed for forward movement
char forward_left_motor = 198; // Speed for forward movement
char turn_rate = 180; // Speed for turns
char backward_rate = 180; // Speed for reverse
char left_back_L_motor = 255;
char left_back_R_motor = 50;
char right_back_L_motor = 50;
char right_back_R_motor = 255;
int backup_turn_duration = 1250;
// servo stuff:
int servoCenter = 91;
int servoRight = 151; // how far right? Ma x is 180, full right.
int servoLeft = 31; // how far left? Min is 0, full left.
Servo myservo; // create servo object to control a servo
// LCD stuff
// Set the LCD address to 0x27 (Could be 0x20 if solder jumpers are bridged!)
// Set the pins on the I2C chip used for LCD connections:
// addr,en,rw,rs,d4,d5,d6,d7,bl,blpol
LiquidCrystal_I2C LCD(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE); // Set the LCD I2C address
// button stuff
char msgs[5][15] = {
"Right Key OK ",
"Up Key OK ",
"Down Key OK ",
"Left Key OK ",
"Select Key OK" };
char start_msg[15] = {
"Start loop "};
int adc_key_val[5] ={
30, 150, 360, 535, 760 };
int NUM_KEYS = 5;
int adc_key_in;
int key=-1;
int oldkey=-1;
byte randNum;
void setup() {
// Sensor setup (HC SR04)
pinMode(SENSOR_TRIG_PIN, OUTPUT);
pinMode(SENSOR_ECHO_PIN, INPUT);
// Servo setup
myservo.attach(9); // attaches the servo on pin 9 to the servo object
myservo.write(servoCenter); // center it by default
// Motor setup
pinMode(M1, OUTPUT);
pinMode(M2, OUTPUT);
// LCD setup
LCD.begin(16, 2); // 16 lines by 2 rows
LCD.clear();
LCD.backlight();
Serial.begin(9600);
randomSeed(analogRead(0));
if ( debug == 1 ) {
/* Print that we made it here */
Serial.println("setup()");
Serial.println("Wait loop - press button to start robot");
}
}
void loop() {
// delay(50);
int dir;
if ( wait ) {
adc_key_in = analogRead(7); // read the value from the sensor
/* get the key */
key = get_key(adc_key_in); // convert into key press
if (key != oldkey) { // if keypress is detected
delay(50); // wait for debounce time
adc_key_in = analogRead(7); // read the value from the sensor
key = get_key(adc_key_in); // convert into key press
if (key != oldkey) {
oldkey = key;
if (key >= 0){
wait = 0;
if ( debug == 1 ) Serial.println("Wait loop - done!");
}
}
}
} else {
if (debug) Serial.print("Distance forward: ");
float ping = ping_distance();
if (debug) Serial.println(ping);
if ( ping > SENSOR_MIN_DIST ) {
go_forward();
}
if ( ping <= SENSOR_MIN_DIST ) {
LCD.setCursor(0,0);
LCD.print("Obstruction!");
brake();
delay(1000);
dir = go_look();
delay(20);
// Decide which way is most open
LCD.clear();
// dir = 1 means that left is either blocked or less open than right
if (dir == 1) {
if (debug) Serial.println("Turning right!");
LCD.setCursor(0,0);
LCD.print("Turning right!");
/*
go_backwards();
delay(20);
turn_right();
*/
backup_right();
}
// dir = 2 means that right is either blocked or less open than left
if (dir == 2) {
if (debug) Serial.println("Turning left!");
LCD.setCursor(0,0);
LCD.print("Turning left!");
/*
go_backwards();
delay(20);
turn_left();
*/
backup_left();
}
// dir = 3 means that both ways are blocked, we should back up and try a random direction
if (dir == 3) {
LCD.setCursor(0,0);
LCD.print("Gotta back up!");
go_backwards();
randNum = random(1,3);
Serial.print("randNum: ");
Serial.println(randNum);
if (randNum == 1) {
LCD.setCursor(0,0);
LCD.print("Turning right!");
backup_right();
} else {
LCD.setCursor(0,0);
LCD.print("Turning left!");
backup_left();
}
}
brake();
LCD.clear();
delay(20);
}
//delay(125);
} // wait
}
int go_look () {
LCD.clear();
// look both ways for better path
// Look left
if (debug) Serial.print("Left distance: ");
myservo.write(servoLeft);
delay(1000);
// read the distance from servoLeft direction
float distance_left = ping_distance();
if (debug) Serial.println(distance_left);
String tmpStr = "Left: ";
tmpStr = tmpStr + distance_left;
LCD.setCursor(0,0);
LCD.print(tmpStr);
// Look right
if (debug) Serial.print("Right distance: ");
myservo.write(servoRight);
delay(1000);
// read the distance from servoRight direction
float distance_right = ping_distance();
if (debug) Serial.println(distance_right);
tmpStr = "Right: ";
tmpStr = tmpStr + distance_right;
LCD.setCursor(0,1);
LCD.print(tmpStr);
// Return to center
myservo.write(servoCenter);
delay(2000);
int retval = 0;
// Both ways are blocked, backup!
if (( distance_left <= SENSOR_MIN_DIST ) && ( distance_right <= SENSOR_MIN_DIST )) {
if (debug) Serial.print("Both left & right are blocked! ");
return 3;
}
if ( distance_left <= SENSOR_MIN_DIST ) {
if (debug) Serial.print("Left is blocked! ");
return 1;
}
if ( distance_right <= SENSOR_MIN_DIST ) {
if (debug) Serial.print("Right is blocked! ");
return 2;
}
// Both seem okay, but which way is better (larger ping return)?
if ( distance_left > distance_right ) {
if (debug) Serial.println("Left is more open!!!");
return 2;
} else {
if (debug) Serial.println("Right is more open!!!");
return 1;
}
}
float ping_distance()
{
float cm;
digitalWrite(SENSOR_TRIG_PIN, LOW); //Low high and low level take a short time to pulse
delayMicroseconds(2);
digitalWrite(SENSOR_TRIG_PIN, HIGH);
delayMicroseconds(10);
digitalWrite(SENSOR_TRIG_PIN, LOW);
cm = pulseIn(SENSOR_ECHO_PIN, HIGH) / 58.0; //Echo time conversion into cm
cm = abs((int(cm * 100.0)) / 100.0); //Keep two decimal places, also convert to positive if needed
return(cm);
}
void go_forward() {
if (debug) Serial.println("Going forward…");
if (! immobile) digitalWrite(M1,HIGH);
if (! immobile) digitalWrite(M2,HIGH);
if (! immobile) analogWrite (E1,forward_right_motor);
if (! immobile) analogWrite (E2,forward_left_motor);
}
void go_backwards() {
if (debug) Serial.println("Reverse!!!");
if (! immobile) digitalWrite(M1,LOW);
if (! immobile) digitalWrite(M2,LOW);
if (! immobile) analogWrite (E1,backward_rate);
if (! immobile) analogWrite (E2,backward_rate);
delay(2000);
}
void turn_left() {
if (debug) Serial.println("Turning left…");
if (! immobile) digitalWrite(M1,HIGH);
if (! immobile) digitalWrite(M2,LOW);
if (! immobile) analogWrite (E1,turn_rate);
if (! immobile) analogWrite (E2,turn_rate);
delay(1200);
}
void turn_right() {
if (debug) Serial.println("Turning right…");
if (! immobile) digitalWrite(M1,LOW);
if (! immobile) digitalWrite(M2,HIGH);
if (! immobile) analogWrite (E1,turn_rate);
if (! immobile) analogWrite (E2,turn_rate);
delay(1200);
}
void backup_left() {
if (debug) Serial.println("Backup left…");
if (! immobile) digitalWrite(M1,LOW);
if (! immobile) digitalWrite(M2,LOW);
if (! immobile) analogWrite (E1,left_back_R_motor);
if (! immobile) analogWrite (E2,left_back_L_motor);
delay(backup_turn_duration);
}
void backup_right() {
if (debug) Serial.println("Backup right…");
if (! immobile) digitalWrite(M1,LOW);
if (! immobile) digitalWrite(M2,LOW);
if (! immobile) analogWrite (E1,right_back_R_motor);
if (! immobile) analogWrite (E2,right_back_L_motor);
delay(backup_turn_duration);
}
void brake() {
if (debug) Serial.println("Braking…");
if (! immobile) digitalWrite(E1,LOW);
if (! immobile) digitalWrite(E2,LOW);
}
int get_key(unsigned int input)
{
int k;
for (k = 0; k < NUM_KEYS; k++)
{
if (input < adc_key_val[k])
{
return k;
}
}
if (k >= NUM_KEYS)
k = -1; // No valid key pressed
return k;
}