-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathG23.xml
executable file
·14585 lines (14580 loc) · 620 KB
/
G23.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version='1.0' encoding='UTF-8'?>
<collection id="G23">
<volume id="1">
<meta>
<booktitle>Journal of Advances in Modeling Earth Systems, Volume 15, Issue 3</booktitle>
<publisher>American Geophysical Union (AGU)</publisher>
<address />
<year>2023</year>
</meta>
<paper id="1">
<title>Challenges in Hydrologic‐Land Surface Modeling of Permafrost Signatures—A Canadian Perspective</title>
<author>
<first>Mohamed S.</first>
<last>Abdelhamed</last>
</author>
<author>
<first>Mohamed</first>
<last>Elshamy</last>
</author>
<author>
<first>Saman</first>
<last>Razavi</last>
</author>
<author>
<first>H. S.</first>
<last>Wheater</last>
</author>
<author>
<first>Mohamed S.</first>
<last>Abdelhamed</last>
</author>
<author>
<first>Mohamed</first>
<last>Elshamy</last>
</author>
<author>
<first>Saman</first>
<last>Razavi</last>
</author>
<author>
<first>H. S.</first>
<last>Wheater</last>
</author>
<author>
<first>Mohamed S.</first>
<last>Abdelhamed</last>
</author>
<author>
<first>Mohamed</first>
<last>Elshamy</last>
</author>
<author>
<first>Saman</first>
<last>Razavi</last>
</author>
<author>
<first>H. S.</first>
<last>Wheater</last>
</author>
<author>
<first>Mohamed S.</first>
<last>Abdelhamed</last>
</author>
<author>
<first>Mohamed</first>
<last>Elshamy</last>
</author>
<author>
<first>Saman</first>
<last>Razavi</last>
</author>
<author>
<first>H. S.</first>
<last>Wheater</last>
</author>
<abstract>Permafrost thaw/degradation in the Northern Hemisphere due to global warming is projected to accelerate in coming decades. Assessment of this trend requires improved understanding of the evolution and dynamics of permafrost areas. Land surface models (LSMs) are well-suited for this due to their physical basis and large-scale applicability. However, LSM application is challenging because (a) LSMs demand extensive and accurate meteorological forcing data, which are not readily available for historic conditions and only available with significant biases for future climate, (b) LSMs possess a large number of model parameters, and (c) observations of thermal/hydraulic regimes to constrain those parameters are severely limited. This study addresses these challenges by applying the MESH-CLASS modeling framework (Modélisation Environmenntale communautaire—Surface et Hydrology embedding the Canadian Land Surface Scheme) to three regions within the Mackenzie River Basin, Canada, under various meteorological forcing data sets, using the variogram analysis of response surfaces framework for sensitivity analysis and threshold-based identifiability analysis. The study shows that the modeler may face complex trade-offs when choosing a forcing data set; for current and future scenarios, forcing data require multi-variate bias correction, and some data sets enable the representation of some aspects of permafrost dynamics, but are inadequate for others. The results identify the most influential model parameters and show that permafrost simulation is most sensitive to parameters controlling surface insulation and runoff generation. But the identifiability analysis reveals that many of the most influential parameters are unidentifiable. These conclusions can inform future efforts for data collection and model parameterization.</abstract>
<url hash="205d72cd">G23-1001</url>
<doi>10.1029/2022ms003013</doi>
<bibkey>Abdelhamed-2023-Challenges</bibkey>
<project>prj9</project>
</paper>
<paper id="2">
<title>Challenges in Hydrologic‐Land Surface Modeling of Permafrost Signatures—A Canadian Perspective</title>
<author>
<first>Mohamed S.</first>
<last>Abdelhamed</last>
</author>
<author>
<first>Mohamed</first>
<last>Elshamy</last>
</author>
<author>
<first>Saman</first>
<last>Razavi</last>
</author>
<author>
<first>H. S.</first>
<last>Wheater</last>
</author>
<author>
<first>Mohamed S.</first>
<last>Abdelhamed</last>
</author>
<author>
<first>Mohamed</first>
<last>Elshamy</last>
</author>
<author>
<first>Saman</first>
<last>Razavi</last>
</author>
<author>
<first>H. S.</first>
<last>Wheater</last>
</author>
<author>
<first>Mohamed S.</first>
<last>Abdelhamed</last>
</author>
<author>
<first>Mohamed</first>
<last>Elshamy</last>
</author>
<author>
<first>Saman</first>
<last>Razavi</last>
</author>
<author>
<first>H. S.</first>
<last>Wheater</last>
</author>
<author>
<first>Mohamed S.</first>
<last>Abdelhamed</last>
</author>
<author>
<first>Mohamed</first>
<last>Elshamy</last>
</author>
<author>
<first>Saman</first>
<last>Razavi</last>
</author>
<author>
<first>H. S.</first>
<last>Wheater</last>
</author>
<abstract>Abstract Permafrost thaw/degradation in the Northern Hemisphere due to global warming is projected to accelerate in coming decades. Assessment of this trend requires improved understanding of the evolution and dynamics of permafrost areas. Land surface models (LSMs) are well‐suited for this due to their physical basis and large‐scale applicability. However, LSM application is challenging because (a) LSMs demand extensive and accurate meteorological forcing data, which are not readily available for historic conditions and only available with significant biases for future climate, (b) LSMs possess a large number of model parameters, and (c) observations of thermal/hydraulic regimes to constrain those parameters are severely limited. This study addresses these challenges by applying the MESH‐CLASS modeling framework (Modélisation Environmenntale communautaire—Surface et Hydrology embedding the Canadian Land Surface Scheme) to three regions within the Mackenzie River Basin, Canada, under various meteorological forcing data sets, using the variogram analysis of response surfaces framework for sensitivity analysis and threshold‐based identifiability analysis. The study shows that the modeler may face complex trade‐offs when choosing a forcing data set; for current and future scenarios, forcing data require multi‐variate bias correction, and some data sets enable the representation of some aspects of permafrost dynamics, but are inadequate for others. The results identify the most influential model parameters and show that permafrost simulation is most sensitive to parameters controlling surface insulation and runoff generation. But the identifiability analysis reveals that many of the most influential parameters are unidentifiable. These conclusions can inform future efforts for data collection and model parameterization.</abstract>
<url hash="8a54ba46">G23-3001</url>
<doi>10.1029/2022ms003013</doi>
<bibkey>Abdelhamed-Elshamy-2023-Challenges-in</bibkey>
<project>prj9</project>
</paper>
</volume>
<volume id="2">
<meta>
<booktitle>Hydrology and Earth System Sciences Discussions, Volume 2023</booktitle>
<publisher>Copernicus GmbH</publisher>
<address />
<year>2023</year>
</meta>
<paper id="1">
<title>On the optimal level of complexity for the representation of wetland systems in land surface models</title>
<author>
<first>Mennatullah</first>
<last>Elrashidy</last>
</author>
<author>
<first>Andrew</first>
<last>Ireson</last>
</author>
<author>
<first>Saman</first>
<last>Razavi</last>
</author>
<author>
<first>Mennatullah</first>
<last>Elrashidy</last>
</author>
<author>
<first>Andrew</first>
<last>Ireson</last>
</author>
<author>
<first>Saman</first>
<last>Razavi</last>
</author>
<abstract>Abstract. Wetland systems are among the largest stores of carbon on the planet, most biologically diverse of all ecosystems, and dominant controls of the hydrologic cycle. However, their representation in land surface models (LSMs), which are the terrestrial lower boundary of Earth system models (ESMs) that inform climate actions, is limited. Here, we explore different possible parametrizations to represent wetland-groundwater-upland interactions with varying levels of system and computational complexity. We perform a series of numerical experiments that are informed by field observations from wetlands in the well-instrumented White Gull Creek in Saskatchewan, in the boreal region of North America. We show that the typical representation of wetlands in LSMs, which ignores interactions with groundwater and uplands, can be inadequate. We show that the optimal level of model complexity depends on the land cover, soil type, and the ultimate modelling purpose, being nowcasting and prediction, scenario analysis, or diagnostic learning.</abstract>
<url hash="dce6bc0f">G23-2003</url>
<doi>10.5194/hess-2023-68</doi>
<bibkey>Elrashidy-2023-On</bibkey>
<project>prj20</project>
</paper>
<paper id="2">
<title>Modeling the sensitivity of snowmelt, soil moisture and streamflow generation to climate over the Canadian Prairies using a basin classification approach</title>
<author>
<first>Zhihua</first>
<last>He</last>
</author>
<author>
<first>Kevin</first>
<last>Shook</last>
</author>
<author>
<first>Christopher</first>
<last>Spence</last>
</author>
<author>
<first>John W.</first>
<last>Pomeroy</last>
</author>
<author>
<first>Colin J.</first>
<last>Whitfield</last>
</author>
<author>
<first>Zhihua</first>
<last>He</last>
</author>
<author>
<first>Kevin</first>
<last>Shook</last>
</author>
<author>
<first>Christopher</first>
<last>Spence</last>
</author>
<author>
<first>John W.</first>
<last>Pomeroy</last>
</author>
<author>
<first>Colin J.</first>
<last>Whitfield</last>
</author>
<abstract>Abstract. This study evaluated the effects of climate perturbations on snowmelt, soil moisture and streamflow generation in small Canadian Prairie basins using a modeling approach based on classification of basin biophysical and hydraulic parameters. Seven basin classes that encompass the entirety of the Prairie ecozone in Canada were determined by cluster analysis of biophysical characteristics. Individual semi-distributed virtual basin (VB) models representing these classes were parameterized in the Cold Regions Hydrological Model (CRHM) platform which includes modules for snowmelt and sublimation, soil freezing and thawing, actual evapotranspiration (ET), soil moisture dynamics, groundwater recharge and depressional storage dynamics including fill and spill runoff generation and variable connected areas. Precipitation (P) and temperature (T) perturbation scenarios covering the range of climate model predictions for the 21st century were used to evaluate climate sensitivity of hydrological processes in individual land cover and basin types across the Prairie ecozone. Results indicated that snow accumulation in wetlands had a greater sensitivity to P and T than that in croplands and grasslands in all the basin types. Wetland soil moisture was also more sensitive to T than the cropland and grassland soil moisture. Jointly influenced by land cover distribution and local climate, basin-average snow accumulation was more sensitive to T in the drier and grassland-characterized basins than in the wetter basins dominated by cropland, whilst basin-average soil moisture was most sensitive to T and P perturbations in basins typified by pothole depressions and broad river valleys. Annual streamflow had the greatest sensitivities to T and P in the dry and poorly connected Interior Grassland basins but the smallest in the wet and well-connected Southern Manitoba basins. The ability of P to compensate for warming induced reductions in snow accumulation and streamflow was much higher in the wetter and cropland-dominated basins than in the drier and grassland-characterized basins, whilst decreases in cropland soil moisture induced by the maximum expected warming of 6 °C could be fully offset by P increase of 11 % in all the basins. These results can be used to 1) identify locations which had the largest hydrological sensitivities to changing climate; and 2) diagnose underlying processes responsible for hydrological responses to expected climate change. Variations of hydrological sensitivity in land cover and basin types suggest that different water management and adaptation methods are needed to address enhanced water stress due to expected climate change in different regions of the Prairie ecozone.</abstract>
<url hash="428229ac">G23-2004</url>
<doi>10.5194/hess-2023-71</doi>
<bibkey>He-2023-Modeling</bibkey>
<project>prj33</project>
</paper>
</volume>
<volume id="3">
<meta>
<booktitle>Journal of Climate, Volume 36, Issue 9</booktitle>
<publisher>American Meteorological Society</publisher>
<address />
<year>2023</year>
</meta>
<paper id="1">
<title>Changes of Extreme Precipitation in CMIP6 Projections: Should We Use Stationary or Nonstationary Models?</title>
<author>
<first>Hebatallah Mohamed</first>
<last>Abdelmoaty</last>
</author>
<author>
<first>Simon Michael</first>
<last>Papalexiou</last>
</author>
<author>
<first>Hebatallah Mohamed</first>
<last>Abdelmoaty</last>
</author>
<author>
<first>Simon Michael</first>
<last>Papalexiou</last>
</author>
<author>
<first>Hebatallah Mohamed</first>
<last>Abdelmoaty</last>
</author>
<author>
<first>Simon Michael</first>
<last>Papalexiou</last>
</author>
<author>
<first>Hebatallah Mohamed</first>
<last>Abdelmoaty</last>
</author>
<author>
<first>Simon Michael</first>
<last>Papalexiou</last>
</author>
<abstract>Abstract With global warming, the behavior of extreme precipitation shifts toward nonstationarity. Here, we analyze the annual maxima of daily precipitation (AMP) all over the globe using projections of the latest phase of the Coupled Model Intercomparison Project (CMIP6) under four shared socioeconomic pathways (SSPs). The projections were bias corrected using a semiparametric quantile mapping, a novel technique extended to extreme precipitation. This analysis 1) explores the variability of future AMP globally and 2) investigates the performance of stationary and nonstationary models in describing future AMP with trends. The results show that global warming potentially intensifies AMP. For the nonparametric analysis, the 33-yr precipitation levels are increasing up to 33.2 mm compared to the historical period. The parametric analysis shows that the return period of 100-yr historical events will decrease approximately to 50 and 70 years in the Northern and Southern Hemispheres, respectively. Under the highest emission scenario, the projected 100-yr levels are expected to increase by 7.5%–21% over the historical levels. Using stationary models to estimate the 100-yr return level for AMP projections with trends leads to an underestimation of 3.4% on average. Extensive Monte Carlo experiments are implemented to explain this underestimation.</abstract>
<url hash="8a54ba46">G23-3001</url>
<pages>2999-3014</pages>
<doi>10.1175/jcli-d-22-0467.1</doi>
<bibkey>Abdelmoaty-2023-Changes</bibkey>
<project>prj32</project>
</paper>
<paper id="2">
<title>Changes of Extreme Precipitation in CMIP6 Projections: Should We Use Stationary or Nonstationary Models?</title>
<author>
<first>Hebatallah Mohamed</first>
<last>Abdelmoaty</last>
</author>
<author>
<first>Simon Michael</first>
<last>Papalexiou</last>
</author>
<author>
<first>Hebatallah Mohamed</first>
<last>Abdelmoaty</last>
</author>
<author>
<first>Simon Michael</first>
<last>Papalexiou</last>
</author>
<author>
<first>Hebatallah Mohamed</first>
<last>Abdelmoaty</last>
</author>
<author>
<first>Simon Michael</first>
<last>Papalexiou</last>
</author>
<author>
<first>Hebatallah Mohamed</first>
<last>Abdelmoaty</last>
</author>
<author>
<first>Simon Michael</first>
<last>Papalexiou</last>
</author>
<abstract>Abstract With global warming, the behavior of extreme precipitation shifts toward nonstationarity. Here, we analyze the annual maxima of daily precipitation (AMP) all over the globe using projections of the latest phase of the Coupled Model Intercomparison Project (CMIP6) under four shared socioeconomic pathways (SSPs). The projections were bias corrected using a semiparametric quantile mapping, a novel technique extended to extreme precipitation. This analysis 1) explores the variability of future AMP globally and 2) investigates the performance of stationary and nonstationary models in describing future AMP with trends. The results show that global warming potentially intensifies AMP. For the nonparametric analysis, the 33-yr precipitation levels are increasing up to 33.2 mm compared to the historical period. The parametric analysis shows that the return period of 100-yr historical events will decrease approximately to 50 and 70 years in the Northern and Southern Hemispheres, respectively. Under the highest emission scenario, the projected 100-yr levels are expected to increase by 7.5%–21% over the historical levels. Using stationary models to estimate the 100-yr return level for AMP projections with trends leads to an underestimation of 3.4% on average. Extensive Monte Carlo experiments are implemented to explain this underestimation.</abstract>
<url hash="e5e95a22">G23-9001</url>
<pages>2999-3014</pages>
<doi>10.1175/jcli-d-22-0467.1</doi>
<bibkey>Abdelmoaty-Papalexiou-2023-Changes-of</bibkey>
<project>prj32</project>
</paper>
</volume>
<volume id="4">
<meta>
<booktitle>Quarterly Journal of the Royal Meteorological Society, Volume 149, Issue 752</booktitle>
<publisher>Wiley</publisher>
<address />
<year>2023</year>
</meta>
<paper id="1">
<title>Projected changes in the hotspots for agriculturally relevant compound events in Western Canada cropping regions under the RCP8.5 scenario</title>
<author>
<first>Richard Yao Kuma</first>
<last>Agyeman</last>
</author>
<author>
<first>Fei</first>
<last>Huo</last>
</author>
<author>
<first>Zhenhua</first>
<last>Li</last>
</author>
<author>
<first>Yanping</first>
<last>Li</last>
</author>
<author>
<first>Richard Yao Kuma</first>
<last>Agyeman</last>
</author>
<author>
<first>Fei</first>
<last>Huo</last>
</author>
<author>
<first>Zhenhua</first>
<last>Li</last>
</author>
<author>
<first>Yanping</first>
<last>Li</last>
</author>
<abstract>The Canadian Prairies are a major grain production region, producing most of the wheat for export in Canada. Global warming and the associated changes in extreme precipitation and temperature events pose significant risks to agriculture on the Canadian Prairies. Compound hazards can cause higher crop failure than isolated events, especially in the main grain production regions in western Canada. To achieve informed climate risk management, it is critical to characterize the threats posed by compound hazards in current and future climates in western Canada. In this study, return periods of events were computed to assess the potential changes in the hotspots for agriculturally relevant compound events in western Canada using two convection-permitting climate simulations: current (CTL) climate and future climate under the RCP8.5 scenario based on a pseudo-global-warming (PGW) approach. Specifically, our study analyzed agricultural drought, low precipitation, heatwaves, and cool waves related to cool-season crops. The results showed the overall good performance of the CTL simulation in capturing spatial patterns of these compound events in western Canada. In the current climate, droughts and heatwaves co-occur mostly in southeastern parts of the prairies. Under the RCP8.5 scenario, they are likely to increase in frequency and expand to cover the major croplands of western Canada. This study provides information that policymakers in the fields of climate change adaptation and agricultural disaster management will find useful.</abstract>
<url hash="178382ff">G23-4001</url>
<pages>830-842</pages>
<doi>10.1002/qj.4434</doi>
<bibkey>Agyeman-2023-Projected</bibkey>
<project>prj5</project>
</paper>
</volume>
<volume id="5">
<meta>
<booktitle>Ecological Indicators, Volume 146</booktitle>
<publisher>Elsevier BV</publisher>
<address />
<year>2023</year>
</meta>
<paper id="1">
<title>Interactions of land-use cover and climate change at global level: How to mitigate the environmental risks and warming effects</title>
<author>
<first>Ali Akbar</first>
<last>Barati</last>
</author>
<author>
<first>Milad</first>
<last>Zhoolideh</last>
</author>
<author>
<first>Hossein</first>
<last>Azadi</last>
</author>
<author>
<first>Ju Hyoung</first>
<last>Lee</last>
</author>
<author>
<first>Jürgen</first>
<last>Scheffran</last>
</author>
<author>
<first>Ali Akbar</first>
<last>Barati</last>
</author>
<author>
<first>Milad</first>
<last>Zhoolideh</last>
</author>
<author>
<first>Hossein</first>
<last>Azadi</last>
</author>
<author>
<first>Ju Hyoung</first>
<last>Lee</last>
</author>
<author>
<first>Jürgen</first>
<last>Scheffran</last>
</author>
<abstract>Humanity deals with several challenges in this century such as climate change, land use, and land use/cover change (LUCC). Determining the patterns, developments, and consequences of LUCC issues for the livelihoods of people, especially poor people, is very important. Therefore, this paper aims to investigate the interactions between LUCC and climate change over the period of 1966–2015 (50 years) as a complex system at the global level. CO2 emissions and surface temperature are considered as the main indicators of climate change (CC). The data were analyzed in time-oriented (time-based) and local or place-oriented (country-based) manners. The results showed that arable and rangeland use changes (LUC) affect CO2 emissions in both direct and indirect ways. However, the direct effect of rangeland use change is positive, and its indirect effect is negative. In addition, deforestation has increased CO2 emissions indirectly. LUCC can also change the ability of the ecosystem to deliver services to people, including biodiversity and other resources such as food, fiber, water, etc. Therefore, it is critical to determine the patterns, trends, and impacts of LUCC on CC. Thus, CC mitigation policies should be followed by considering both direct and indirect effects. Without a doubt, this will be realized when the decision and policymakers have a better understanding of the structure and interaction between CC, LUCC, and their components as a whole system.</abstract>
<url hash="af3fe59a">G23-5001</url>
<pages>109829</pages>
<doi>10.1016/j.ecolind.2022.109829</doi>
<bibkey>Barati-2023-Interactions</bibkey>
<project>prj28</project>
</paper>
</volume>
<volume id="6">
<meta>
<booktitle>Journal of Flood Risk Management</booktitle>
<publisher>Wiley</publisher>
<address />
<year>2023</year>
</meta>
<paper id="1">
<title>Towards a coherent flood forecasting framework for Canada: Local to global implications</title>
<author>
<first>Louise</first>
<last>Arnal</last>
</author>
<author>
<first>Alain</first>
<last>Pietroniro</last>
</author>
<author>
<first>John W.</first>
<last>Pomeroy</last>
</author>
<author>
<first>Vincent</first>
<last>Fortin</last>
</author>
<author>
<first>David R.</first>
<last>Casson</last>
</author>
<author>
<first>Tricia A.</first>
<last>Stadnyk</last>
</author>
<author>
<first>Prabin</first>
<last>Rokaya</last>
</author>
<author>
<first>Dorothy</first>
<last>Durnford</last>
</author>
<author>
<first>Evan</first>
<last>Friesenhan</last>
</author>
<author>
<first>Martyn</first>
<last>Clark</last>
</author>
<author>
<first>Louise</first>
<last>Arnal</last>
</author>
<author>
<first>Alain</first>
<last>Pietroniro</last>
</author>
<author>
<first>John W.</first>
<last>Pomeroy</last>
</author>
<author>
<first>Vincent</first>
<last>Fortin</last>
</author>
<author>
<first>David R.</first>
<last>Casson</last>
</author>
<author>
<first>Tricia A.</first>
<last>Stadnyk</last>
</author>
<author>
<first>Prabin</first>
<last>Rokaya</last>
</author>
<author>
<first>Dorothy</first>
<last>Durnford</last>
</author>
<author>
<first>Evan</first>
<last>Friesenhan</last>
</author>
<author>
<first>Martyn</first>
<last>Clark</last>
</author>
<abstract>Abstract Operational flood forecasting in Canada is a provincial responsibility that is carried out by several entities across the country. However, the increasing costs and impacts of floods require better and nationally coordinated flood prediction systems. A more coherent flood forecasting framework for Canada can enable implementing advanced prediction capabilities across the different entities with responsibility for flood forecasting. Recently, the Canadian meteorological and hydrological services were tasked to develop a national flow guidance system. Alongside this initiative, the Global Water Futures program has been advancing cold regions process understanding, hydrological modeling, and forecasting. A community of practice was established for industry, academia, and decision‐makers to share viewpoints on hydrological challenges. Taken together, these initiatives are paving the way towards a national flood forecasting framework. In this article, forecasting challenges are identified (with a focus on cold regions), and recommendations are made to promote the creation of this framework. These include the need for cooperation, well‐defined governance, and better knowledge mobilization. Opportunities and challenges posed by the increasing data availability globally are also highlighted. Advances in each of these areas are positioning Canada as a major contributor to the international operational flood forecasting landscape. This article highlights a route towards the deployment of capacities across large geographical domains.</abstract>
<url hash="bd8a4a74">G23-6001</url>
<doi>10.1111/jfr3.12895</doi>
<bibkey>Arnal-2023-Towards</bibkey>
<project>prj20</project>
</paper>
<paper id="2">
<title>Connecting hydrological modelling and forecasting from global to local scales: Perspectives from an international joint virtual workshop</title>
<author>
<first>Antara</first>
<last>Dasgupta</last>
</author>
<author>
<first>Louise</first>
<last>Arnal</last>
</author>
<author>
<first>Rebecca</first>
<last>Emerton</last>
</author>
<author>
<first>Shaun</first>
<last>Harrigan</last>
</author>
<author>
<first>Gwyneth</first>
<last>Matthews</last>
</author>
<author>
<first>Ameer</first>
<last>Muhammad</last>
</author>
<author>
<first>Karen</first>
<last>O’Regan</last>
</author>
<author>
<first>Teresa</first>
<last>Pérez‐Ciria</last>
</author>
<author>
<first>Emixi</first>
<last>Valdez</last>
</author>
<author>
<first>Bart van</first>
<last>Osnabrugge</last>
</author>
<author>
<first>Micha</first>
<last>Werner</last>
</author>
<author>
<first>Carlo</first>
<last>Buontempo</last>
</author>
<author>
<first>Hannah</first>
<last>Cloke</last>
</author>
<author>
<first>Florian</first>
<last>Pappenberger</last>
</author>
<author>
<first>Ilias</first>
<last>Pechlivanidis</last>
</author>
<author>
<first>Christel</first>
<last>Prudhomme</last>
</author>
<author>
<first>Maria‐Helena</first>
<last>Ramos</last>
</author>
<author>
<first>Peter</first>
<last>Salamon</last>
</author>
<author>
<first>Antara</first>
<last>Dasgupta</last>
</author>
<author>
<first>Louise</first>
<last>Arnal</last>
</author>
<author>
<first>Rebecca</first>
<last>Emerton</last>
</author>
<author>
<first>Shaun</first>
<last>Harrigan</last>
</author>
<author>
<first>Gwyneth</first>
<last>Matthews</last>
</author>
<author>
<first>Ameer</first>
<last>Muhammad</last>
</author>
<author>
<first>Karen</first>
<last>O’Regan</last>
</author>
<author>
<first>Teresa</first>
<last>Pérez‐Ciria</last>
</author>
<author>
<first>Emixi</first>
<last>Valdez</last>
</author>
<author>
<first>Bart van</first>
<last>Osnabrugge</last>
</author>
<author>
<first>Micha</first>
<last>Werner</last>
</author>
<author>
<first>Carlo</first>
<last>Buontempo</last>
</author>
<author>
<first>Hannah</first>
<last>Cloke</last>
</author>
<author>
<first>Florian</first>
<last>Pappenberger</last>
</author>
<author>
<first>Ilias</first>
<last>Pechlivanidis</last>
</author>
<author>
<first>Christel</first>
<last>Prudhomme</last>
</author>
<author>
<first>Maria‐Helena</first>
<last>Ramos</last>
</author>
<author>
<first>Peter</first>
<last>Salamon</last>
</author>
<abstract>Abstract The unprecedented progress in ensemble hydro‐meteorological modelling and forecasting on a range of temporal and spatial scales, raises a variety of new challenges which formed the theme of the Joint Virtual Workshop, ‘Connecting global to local hydrological modelling and forecasting: challenges and scientific advances’. Held from 29 June to 1 July 2021, this workshop was co‐organised by the European Centre for Medium‐Range Weather Forecasts (ECMWF), the Copernicus Emergency Management (CEMS) and Climate Change (C3S) Services, the Hydrological Ensemble Prediction EXperiment (HEPEX), and the Global Flood Partnership (GFP). This article aims to summarise the state‐of‐the‐art presented at the workshop and provide an early career perspective. Recent advances in hydrological modelling and forecasting, reflections on the use of forecasts for decision‐making across scales, and means to minimise new barriers to communication in the virtual format are also discussed. Thematic foci of the workshop included hydrological model development and skill assessment, uncertainty communication, forecasts for early action, co‐production of services and incorporation of local knowledge, Earth observation, and data assimilation. Connecting hydrological services to societal needs and local decision‐making through effective communication, capacity‐building and co‐production was identified as critical. Multidisciplinary collaborations emerged as crucial to effectively bring newly developed tools to practice.</abstract>
<url hash="98255650">G23-37001</url>
<doi>10.1111/jfr3.12880</doi>
<bibkey>Dasgupta-2023-Connecting</bibkey>
<project>prj31</project>
</paper>
</volume>
<volume id="7">
<meta>
<booktitle>Science of The Total Environment, Volume 876</booktitle>
<publisher>Elsevier BV</publisher>
<address />
<year>2023</year>
</meta>
<paper id="1">
<title>A wastewater-based risk index for SARS-CoV-2 infections among three cities on the Canadian Prairie</title>
<author>
<first>Mohsen</first>
<last>Asadi</last>
</author>
<author>
<first>Femi F.</first>
<last>Oloye</last>
</author>
<author>
<first>Yuwei</first>
<last>Xie</last>
</author>
<author>
<first>Jenna</first>
<last>Cantin</last>
</author>
<author>
<first>Jonathan K.</first>
<last>Challis</last>
</author>
<author>
<first>Kerry N.</first>
<last>McPhedran</last>
</author>
<author>
<first>Warsame</first>
<last>Yusuf</last>
</author>
<author>
<first>David</first>
<last>Champredon</last>
</author>
<author>
<first>Pu</first>
<last>Xia</last>
</author>
<author>
<first>Chantel De</first>
<last>Lange</last>
</author>
<author>
<first>Seba</first>
<last>El-Baroudy</last>
</author>
<author>
<first>Mark R.</first>
<last>Servos</last>
</author>
<author>
<first>Paul D.</first>
<last>Jones</last>
</author>
<author>
<first>John P.</first>
<last>Giesy</last>
</author>
<author>
<first>Markus</first>
<last>Brinkmann</last>
</author>
<author>
<first>Mohsen</first>
<last>Asadi</last>
</author>
<author>
<first>Femi F.</first>
<last>Oloye</last>
</author>
<author>
<first>Yuwei</first>
<last>Xie</last>
</author>
<author>
<first>Jenna</first>
<last>Cantin</last>
</author>
<author>
<first>Jonathan K.</first>
<last>Challis</last>
</author>
<author>
<first>Kerry N.</first>
<last>McPhedran</last>
</author>
<author>
<first>Warsame</first>
<last>Yusuf</last>
</author>
<author>
<first>David</first>
<last>Champredon</last>
</author>
<author>
<first>Pu</first>
<last>Xia</last>
</author>
<author>
<first>Chantel De</first>
<last>Lange</last>
</author>
<author>
<first>Seba</first>
<last>El-Baroudy</last>
</author>
<author>
<first>Mark R.</first>
<last>Servos</last>
</author>
<author>
<first>Paul D.</first>
<last>Jones</last>
</author>
<author>
<first>John P.</first>
<last>Giesy</last>
</author>
<author>
<first>Markus</first>
<last>Brinkmann</last>
</author>
<abstract>Wastewater surveillance (WWS) is useful to better understand the spreading of coronavirus disease 2019 (COVID-19) in communities, which can help design and implement suitable mitigation measures. The main objective of this study was to develop the Wastewater Viral Load Risk Index (WWVLRI) for three Saskatchewan cities to offer a simple metric to interpret WWS. The index was developed by considering relationships between reproduction number, clinical data, daily per capita concentrations of virus particles in wastewater, and weekly viral load change rate. Trends of daily per capita concentrations of SARS-CoV-2 in wastewater for Saskatoon, Prince Albert, and North Battleford were similar during the pandemic, suggesting that per capita viral load can be useful to quantitatively compare wastewater signals among cities and develop an effective and comprehensible WWVLRI. The effective reproduction number (Rt) and the daily per capita efficiency adjusted viral load thresholds of 85 × 106 and 200 × 106 N2 gene counts (gc)/population day (pd) were determined. These values with rates of change were used to categorize the potential for COVID-19 outbreaks and subsequent declines. The weekly average was considered 'low risk' when the per capita viral load was 85 × 106 N2 gc/pd. A 'medium risk' occurs when the per capita copies were between 85 × 106 and 200 × 106 N2 gc/pd. with a rate of change <100 %. The start of an outbreak is indicated by a 'medium-high' risk classification when the week-over-week rate of change was >100 %, and the absolute magnitude of concentrations of viral particles was >85 × 106 N2 gc/pd. Lastly, a 'high risk' occurs when the viral load exceeds 200 × 106 N2 gc/pd. This methodology provides a valuable resource for decision-makers and health authorities, specifically given the limitation of COVID-19 surveillance based on clinical data.</abstract>
<url hash="05362d11">G23-7001</url>
<pages>162800</pages>
<doi>10.1016/j.scitotenv.2023.162800</doi>
<bibkey>Asadi-2023-A</bibkey>
<project>prj1</project>
</paper>
<paper id="2">
<title>Modeling multi-year phosphorus dynamics in a bioretention cell: Phosphorus partitioning, accumulation, and export</title>
<author>
<first>Bowen</first>
<last>Zhou</last>
</author>
<author>
<first>Mahyar</first>
<last>Shafii</last>
</author>
<author>
<first>Chris T.</first>
<last>Parsons</last>
</author>
<author>
<first>Elodie</first>
<last>Passeport</last>
</author>
<author>
<first>Fereidoun</first>
<last>Rezanezhad</last>
</author>
<author>
<first>Ariel</first>
<last>Lisogorsky</last>
</author>
<author>
<first>Philippe Van</first>
<last>Cappellen</last>
</author>
<author>
<first>Bowen</first>
<last>Zhou</last>
</author>
<author>
<first>Mahyar</first>
<last>Shafii</last>
</author>
<author>
<first>Chris T.</first>
<last>Parsons</last>
</author>
<author>
<first>Elodie</first>
<last>Passeport</last>
</author>
<author>
<first>Fereidoun</first>
<last>Rezanezhad</last>
</author>
<author>
<first>Ariel</first>
<last>Lisogorsky</last>
</author>
<author>
<first>Philippe Van</first>
<last>Cappellen</last>
</author>
<abstract>Phosphorus (P) export from urban areas via stormwater runoff contributes to eutrophication of downstream aquatic ecosystems. Bioretention cells are a Low Impact Development (LID) technology promoted as a green solution to attenuate urban peak flow discharge, as well as the export of excess nutrients and other contaminants. Despite their rapidly growing implementation worldwide, a predictive understanding of the efficiency of bioretention cells in reducing urban P loadings remains limited. Here, we present a reaction-transport model to simulate the fate and transport of P in a bioretention cell facility in the greater Toronto metropolitan area. The model incorporates a representation of the biogeochemical reaction network that controls P cycling within the cell. We used the model as a diagnostic tool to determine the relative importance of processes immobilizing P in the bioretention cell. The model predictions were compared to multi-year observational data on 1) the outflow loads of total P (TP) and soluble reactive P (SRP) during the 2012-2017 period, 2) TP depth profiles collected at 4 time points during the 2012-2019 period, and 3) sequential chemical P extractions performed on core samples from the filter media layer obtained in 2019. Results indicate that exfiltration to underlying native soil was principally responsible for decreasing the surface water discharge from the bioretention cell (63 % runoff reduction). From 2012 to 2017, the cumulative outflow export loads of TP and SRP only accounted for 1 % and 2 % of the corresponding inflow loads, respectively, hence demonstrating the extremely high P reduction efficiency of this bioretention cell. Accumulation in the filter media layer was the predominant mechanism responsible for the reduction in P outflow loading (57 % retention of TP inflow load) followed by plant uptake (21 % TP retention). Of the P retained within the filter media layer, 48 % occurred in stable, 41 % in potentially mobilizable, and 11 % in easily mobilizable forms. There were no signs that the P retention capacity of the bioretention cell was approaching saturation after 7 years of operation. The reactive transport modeling approach developed here can in principle be transferred and adapted to fit other bioretention cell designs and hydrological regimes to estimate P surface loading reductions at a range of temporal scales, from a single precipitation event to long-term (i.e., multi-year) operation.</abstract>
<url hash="9c3f7cab">G23-7002</url>
<pages>162749</pages>
<doi>10.1016/j.scitotenv.2023.162749</doi>
<bibkey>Zhou-2023-Modeling</bibkey>
<project>prj31</project>
</paper>
</volume>
<volume id="8">
<meta>
<booktitle>Earth System Science Data, Volume 15, Issue 3</booktitle>
<publisher>Copernicus GmbH</publisher>
<address />
<year>2023</year>
</meta>
<paper id="1">
<title>Lake surface temperature retrieved from Landsat satellite series (1984 to 2021) for the North Slave Region</title>
<author>
<first>Gifty</first>
<last>Attiah</last>
</author>
<author>
<first>Homa Kheyrollah</first>
<last>Pour</last>
</author>
<author>
<first>K. Andrea</first>
<last>Scott</last>
</author>
<author>
<first>Gifty</first>
<last>Attiah</last>
</author>
<author>
<first>Homa Kheyrollah</first>
<last>Pour</last>
</author>
<author>
<first>K. Andrea</first>
<last>Scott</last>
</author>
<abstract>Abstract. Lake surface temperature (LST) is an important attribute that highlights regional weather and climate variability and trends. The spatial resolution and thermal sensors on Landsat platforms provide the capability of monitoring the temporal and spatial distribution of lake surface temperature on small- to medium-sized lakes. In this study, a retrieval algorithm was applied to the thermal bands of Landsat archives to generate a LST dataset (North Slave LST dataset) for 535 lakes in the North Slave Region (NSR) of the Northwest Territories (NWT), Canada, for the period of 1984 to 2021. North Slave LST was retrieved from Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS); however, most of the dataset was created from the thermal bands of Landsat 5 (43 %) due to its longevity (1984–2013). Cloud masks were applied to Landsat images to eliminate cloud cover. In addition, a 100 m inward buffer was applied to lakes to prevent pixel mixing with shorelines. To evaluate the algorithm applied, retrieved LST was compared with in situ data and Moderate Resolution Imaging Spectroradiometer (MODIS) LST observations. A good agreement was observed between in situ observations and North Slave LST, with a mean bias of 0.12 ∘C and a root mean squared deviation (RMSD) of 1.7 ∘C. The North Slave LST dataset contains more available data for warmer months (May to September; 57.3 %) compared to colder months (October to April). The average number of images per year for each lake across the NSR ranged from 20 to 45. The North Slave LST dataset, available at https://doi.org/10.5683/SP3/J4GMC2 (Attiah et al., 2022), will provide communities, scientists, and stakeholders with spatial and temporal changing temperature trends on lakes for the past 38 years.</abstract>
<url hash="5d553d47">G23-8001</url>
<pages>1329-1355</pages>
<doi>10.5194/essd-15-1329-2023</doi>
<bibkey>Attiah-2023-Lake</bibkey>
<project>prj34</project>
</paper>
<paper id="2">
<title>Pan-Arctic soil element bioavailability estimations</title>
<author>
<first>Peter</first>
<last>Stimmler</last>
</author>
<author>
<first>Mathias</first>
<last>Goeckede</last>
</author>
<author>
<first>Bo</first>
<last>Elberling</last>
</author>
<author>
<first>Susan M.</first>
<last>Natali</last>
</author>
<author>
<first>Peter</first>
<last>Kuhry</last>
</author>
<author>
<first>Nia</first>
<last>Perron</last>
</author>
<author>
<first>Fabrice</first>
<last>Lacroix</last>
</author>
<author>
<first>Gustaf</first>
<last>Hugelius</last>
</author>
<author>
<first>Oliver</first>
<last>Sonnentag</last>
</author>
<author>
<first>Jens</first>
<last>Strauß</last>
</author>
<author>
<first>Christina</first>
<last>Minions</last>
</author>
<author>
<first>Michael</first>
<last>Sommer</last>
</author>
<author>
<first>Jörg</first>
<last>Schaller</last>
</author>
<author>
<first>Peter</first>
<last>Stimmler</last>
</author>
<author>
<first>Mathias</first>
<last>Goeckede</last>
</author>
<author>
<first>Bo</first>
<last>Elberling</last>
</author>
<author>
<first>Susan M.</first>
<last>Natali</last>
</author>
<author>
<first>Peter</first>