-
Notifications
You must be signed in to change notification settings - Fork 9
/
makedataset.py
157 lines (134 loc) · 5.38 KB
/
makedataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# -*- coding: utf-8 -*-
"""
Created on Wed Feb 12 20:00:46 2020
@author: Administrator
"""
import os
import os.path
import random
import numpy as np
import cv2
import h5py
import torch
import torch.utils.data as udata
import argparse
from PIL import Image
class Dataset(udata.Dataset):
r"""Implements torch.utils.data.Dataset
"""
def __init__(self, file, trainrgb=True,trainsyn = True, shuffle=False):
super(Dataset, self).__init__()
self.trainrgb = trainrgb
self.trainsyn = trainsyn
self.train_haze = file
h5f = h5py.File(self.train_haze, 'r')
self.keys = list(h5f.keys())
if shuffle:
random.shuffle(self.keys)
h5f.close()
def __len__(self):
return len(self.keys)
def __getitem__(self, index):
h5f = h5py.File(self.train_haze, 'r')
key = self.keys[index]
data = np.array(h5f[key])
h5f.close()
return torch.Tensor(data)
def data_augmentation(clear, mode):
r"""Performs dat augmentation of the input image
Args:
image: a cv2 (OpenCV) image
mode: int. Choice of transformation to apply to the image
0 - no transformation
1 - flip up and down
2 - rotate counterwise 90 degree
3 - rotate 90 degree and flip up and down
4 - rotate 180 degree
5 - rotate 180 degree and flip
6 - rotate 270 degree
7 - rotate 270 degree and flip
"""
clear = np.transpose(clear, (2, 3, 0, 1))
if mode == 0:
# original
clear = clear
elif mode == 1:
# flip up and down
clear = np.flipud(clear)
elif mode == 2:
# rotate counterwise 90 degree
clear = np.rot90(clear)
elif mode == 3:
# rotate 90 degree and flip up and down
clear = np.rot90(clear)
clear = np.flipud(clear)
elif mode == 4:
# rotate 180 degree
clear = np.rot90(clear, k=2)
elif mode == 5:
# rotate 180 degree and flip
clear = np.rot90(clear, k=2)
clear = np.flipud(clear)
elif mode == 6:
# rotate 270 degree
clear = np.rot90(clear, k=3)
elif mode == 7:
# rotate 270 degree and flip
clear = np.rot90(clear, k=3)
clear = np.flipud(clear)
else:
raise Exception('Invalid choice of image transformation')
return np.transpose(clear, (2, 3, 0, 1))
def img_to_patches(img,win,stride,Syn=True):
typ, chl, raw, col = img.shape
chl = int(chl)
num_raw = np.ceil((raw-win)/stride+1).astype(np.uint8)
num_col = np.ceil((col-win)/stride+1).astype(np.uint8)
count = 0
total_process = int(num_col)*int(num_raw)
img_patches = np.zeros([typ, chl, win, win, total_process])
if Syn:
for i in range(num_raw):
for j in range(num_col):
if stride * i + win <= raw and stride * j + win <=col:
img_patches[:,:,:,:,count] = img[:, :, stride*i : stride*i + win, stride*j : stride*j + win]
elif stride * i + win > raw and stride * j + win<=col:
img_patches[:,:,:,:,count] = img[:, :,raw-win : raw,stride * j : stride * j + win]
elif stride * i + win <= raw and stride*j + win>col:
img_patches[:,:,:,:,count] = img[:, :,stride*i : stride*i + win, col-win : col]
else:
img_patches[:,:,:,:,count] = img[:, :,raw-win : raw,col-win : col]
img_patches[:,:,:,:,count] = data_augmentation(img_patches[:, :, :, :, count], np.random.randint(0, 7))
count +=1
return img_patches
def read_img(img):
return np.array(Image.open(img))/255.
def Train_data(args):
file_list = os.listdir(f'{args.train_path}/{args.gt_name}')
with h5py.File(args.data_name, 'w') as h5f:
count = 0
for i in range(len(file_list)):
print(file_list[i])
img_list = []
img_list.append(read_img(f'{args.train_path}/{args.gt_name}/{file_list[i]}'))
for j in args.degradation_name:
img_list.append(read_img(f'{args.train_path}/{j}/{file_list[i]}'))
img = np.stack(img_list,0)
img = img_to_patches(img.transpose(0, 3, 1, 2), args.patch_size, args.stride)
for nx in range(img.shape[4]):
data = img[:,:,:,:,nx]
print(count, data.shape)
h5f.create_dataset(str(count), data=data)
count += 1
h5f.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description = "Building the training patch database")
parser.add_argument("--patch-size", type = int, default=256, help="Patch size")
parser.add_argument("--stride", type = int, default=200, help="Size of stride")
parser.add_argument("--train-path", type = str, default='./data/CDD-11_train', help="Train path")
parser.add_argument("--data-name", type = str, default='dataset.h5', help="Data name")
parser.add_argument("--gt-name", type = str, default='clear', help="HQ name")
parser.add_argument("--degradation-name", type = list, default=['low','haze','rain','snow',\
'low_haze','low_rain','low_snow','haze_rain','haze_snow','low_haze_rain','low_haze_snow'], help="LQ name")
args = parser.parse_args()
Train_data(args)