Skip to content

Latest commit

 

History

History
108 lines (78 loc) · 5.97 KB

File metadata and controls

108 lines (78 loc) · 5.97 KB

Exercises 25.2-1


Run the Floyd-Warshall algorithm on the weighted, directed graph of Figure 25.2. Show the matrix D(k) that results for each iteration of the outer loop.

Answer

straightforward.

Exercises 25.2-2


Show how to compute the transitive closure using the technique of Section 25.1.

Answer

将EXTEND-SHORTEST-PATHS中第7行的min换成OR,+换成AND

Exercises 25.2-3


Modify the FLOYD-WARSHALL procedure to include computation of the Π(k) matrices according to equations (25.6) and (25.7). Prove rigorously that for all i ∈ V , the predecessor subgraph Gπ,i is a shortest-paths tree with root i.

Answer

证明分三步:

  1. 无环。 每次循环过程中,一定有 dij(k) <= dij(k - 1)。 首先证明如果检验dij(k)之后有 πij(k) = l,则 dij(k) >= dil(k) + wlj。 检验dij(k)的过程中, 若 dij(k - 1) <= dik(k - 1) + dkj(k - 1),有 dij(k) = dij(k - 1),πij(k) = πij(k - 1) 都为l,l 存在于 (1, 2, ... , k - 1) 中。 k - 1 次循环在此时已经完成,故有 dij(k) = dij(k - 1) = dil(k - 1) + wlj >= dil(k) + wlj。

    若 dij(k - 1) > dik(k - 1) + dkj(k - 1),有 dij(k) = dik(k - 1) + dkj(k - 1),必然有 πij(k) = πkj(k - 1) 都为l,l 存在于 (1, 2, ... , k - 1) 中。 k - 1 次循环在此时已经完成,故有 dij(k) = dik(k - 1) + dkj(k - 1) = dik(k - 1) + dkl(k - 1) + wlj,又因为dil(k - 1) <= dik(k - 1) + dkl(k - 1)(dil(k - 1) 是最短路径权重),有 dij(k) >= dil(k - 1) + wlj >= dil(k) + wlj。 现在假设Gπ,i中存在环路 (v0, v1, ... , vs),vs = v0,πip(k) = p - 1,p = 1, 2, ... , s。不失一般性,假设 πis(k) = s - 1 是形成环的最后一步,这一步之前 πis(k) != s - 1。那么这一步之前一定有 dij(k) > dil(k) + wlj。此时,将所有 (v0, v1, ... , vs)对应的式子累加起来,有 Σdij(k) > Σdil(k) + Σwlj,j = 1, 2, ... , s,l = 0, 1, ... , s - 1,有Σwlj < 0,j = 1, 2, ... , s,l = 0, 1, ... , s - 1,这与Floyd-Wallshall算法基本假设 不存在权重为负的环 矛盾。

  2. Gπ,i 是一棵以 i 为根的有根树。 因为 πij 记录了从 i 到 j 的路径中j的前驱点,Gπ,i 只取 πij 不为空的点,根据归纳法容易证明 Gπ,i 中存在 i 到 Gπ,i 中任意点的简单路径。下面证明这种简单路径唯一。 假设 i 到 j 有不止一条简单路径,设其中两条为 i~>p~>x->z~>j 和 i~>p~>y->z~>j,对于z点,有 πiz = x 同时 πiz = y,有 x = y,这两条路径为一条。同样的方法可以证明所有路径其实是一条,与假设矛盾。

  3. Gπ,i 包含的一定是 i 到每个点的最短路径。根据算法过程可知正确。

Exercises 25.2-4


As it appears above, the Floyd-Warshall algorithm requires Θ(n3) space, since we compute for i, j, k = 1, 2,...,n. Show that the following procedure, which simply drops all the superscripts, is correct, and thus only Θ(n2) space is required.

Answer

当然是正确的,因为这个动态规划只需要保存上一个状态.也就是要计算当前这个状态只需要借助上一个状态.

Exercises 25.2-5


Suppose that we modify the way in which equality is handled in equation (25.7):

Is this alternative definition of the predecessor matrix Π correct?

Answer

感觉正确呀.

Exercises 25.2-6


How can the output of the Floyd-Warshall algorithm be used to detect the presence of a negative-weight cycle?

Answer

只需要在正常的Floyd-Warshall算法完成后再多跑一个循环,如果有一个值还能更新则说明有负权回路。 或者,权重矩阵D对角线上出现了负值。

Exercises 25.2-7


Another way to reconstruct shortest paths in the Floyd-Warshall algorithm uses values Φij(k) for i, j, k = 1, 2,..., n, where Φij(k) is the highest-numbered intermediate vertex of a shortest path from i to j in which all intermediate vertices are in the set {1, 2,..., k}. Give a recursive formulation for  Φij(k) , modify the FLOYD-WARSHALL procedure to compute the Φij(k) values, and rewrite the PRINT-ALL-PAIRS-SHORTEST-PATH procedure to take the matrix Φ = (Φij(n)) as an input. How is the matrix Θ like the s table in the matrix-chain multiplication problem of Section 15.2?

Answer

			Φij(k-1)   如果dij(k-1) <= dik(k-1) + dkj(k-1) 
Φij(k) = 
			k			otherwise
			

PRINT-ALL-PAIRS-SHORTEST-PATH(Φ,i,j)
	if i == j
		then print i
	else if Φ(i,j) = -1
		then print "no path from 'i' to 'j' exists"
	else
		PRINT-ALL-PAIRS-SHORTEST-PATH(Φ,i,Φ(i, j))
		PRINT-ALL-PAIRS-SHORTEST-PATH(Φ,Φ(i, j),j)

Exercises 25.2-8


Give an O(V E)-time algorithm for computing the transitive closure of a directed graph G = (V, E).

Answer

对每个节点都跑一次DFS. 一共V个点,E条边,所以是O(VE)的时间.

Exercises 25.2-9


Suppose that the transitive closure of a directed acyclic graph can be computed in f(|V|,|E|) time, where f is a monotonically increasing function of |V| and |E|. Show that the time to compute the transitive closure G* = (V, E*) of a general directed graph G = (V, E) is f(|V|,|E|) + O(V + E*).

Answer

首先随便选择一个点开始DFS,搜索中如果遇到灰色的点说明有环,把这一次搜索用到的边 (u, v) 记录下来,并从E中删除。这个操作复杂度 O(V + E) <= O(V + E*)。这个操作之后有环图变成了无环图,运行f(|V|, |E|)算法,得到不完整的传递闭包。 结束后,遍历被删除的边,连接u和v,以及所有v能到达的点。由于记录 (u, v) 不会重复,遍历过程最多把不完整的传递闭包每条边遍历一遍,外加被删除的边(这些边一定存在于E*中),因此复杂度为O(E*)。 因此,这个算法总的复杂度为f(|V|, |E|) + O(V + E*)


Follow @louis1992 on github to help finish this task.