Skip to content

Latest commit

 

History

History
88 lines (60 loc) · 2.55 KB

README.md

File metadata and controls

88 lines (60 loc) · 2.55 KB

Project Template: Getting Started with TensorFlow

Tools and Technologies:

  • Primary Framework: TensorFlow
  • Additional Libraries: None required for the basic example.

Setup and Installation:

  1. Install TensorFlow with CUDA using pip:

    pip install tensorflow[and-cuda]
  2. Verify the installation by running the following Python commands:

    import tensorflow as tf
    print("TensorFlow version:", tf.__version__)

Basic TensorFlow Operations:

  1. Perform a simple addition operation using TensorFlow:

    import tensorflow as tf
    
    # Define constants
    const1 = tf.constant([[1,2,3], [1,2,3]])
    const2 = tf.constant([[3,4,5], [3,4,5]])
    
    # Perform addition
    result = tf.add(const1, const2)
    
    # In TensorFlow 2.x, you can directly obtain the numerical values using the numpy() method
    print(result.numpy())

Building a Simple Machine Learning Model:

  1. Load a dataset, build, and train a machine learning model using TensorFlow:

    import tensorflow as tf
    
    # Load the MNIST dataset
    mnist = tf.keras.datasets.mnist
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train, x_test = x_train / 255.0, x_test / 255.0
    
    # Build a tf.keras.Sequential model
    model = tf.keras.models.Sequential([
      tf.keras.layers.Flatten(input_shape=(28, 28)),
      tf.keras.layers.Dense(128, activation='relu'),
      tf.keras.layers.Dropout(0.2),
      tf.keras.layers.Dense(10)
    ])

Running the Model:

  1. Compile and train the model:

    model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
                  metrics=['accuracy'])
    
    # Train the model
    model.fit(x_train, y_train, epochs=5)
    
    # Evaluate the model
    model.evaluate(x_test,  y_test, verbose=2)

Template Author:

References: