-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbikeshare_2.py
218 lines (167 loc) · 7.69 KB
/
bikeshare_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import time
import pandas as pd
import numpy as np
CITY_DATA = { 'chicago': 'chicago.csv',
'new york city': 'new_york_city.csv',
'washington': 'washington.csv' }
def get_filters():
"""
Asks user to specify a city, month, and day to analyze.
Returns:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
"""
print('Hello! Let\'s explore some US bikeshare data!')
# get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs
city = input("Would you like to see data for Chicago, New York City, or Washington? \n").lower()
while city not in ['chicago', 'new york city', 'washington']:
print("This is invalid city.\n")
city = input("Pleace inter one of those: Chicago, New York City, or Washington \n")
# get user input for month (all, january, february, ... , june)
month = input("Would you like to see data for (all, january, february, march, april, may or june)? \n").lower()
while month not in ['all', 'january', 'february', 'march', 'april', 'may', 'june']:
print("This is invalid month.\n")
month = input("Pleace inter one of those: (all, january, february, march, april, may or june) \n")
# get user input for day of week (all, monday, tuesday, ... sunday)
day = input("Would you like to see data for (all, monday, tuesday, wednesday, thursday, friday, saturday, or Sunday)? \n").lower()
while day not in ['all', 'monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday']:
print("This is invalid day.\n")
day = input("Pleace inter one of those: (all, monday, tuesday, wednesday, thursday, friday, saturday, or sunday) \n")
print('-'*40)
return city, month, day
def load_data(city, month, day):
"""
Loads data for the specified city and filters by month and day if applicable.
Args:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
Returns:
df - Pandas DataFrame containing city data filtered by month and day
"""
# load data file into a dataframe
df = pd.read_csv(CITY_DATA[city])
# convert the Start Time column to datetime
df['Start Time'] = pd.to_datetime(df['Start Time'])
# extract month and day of week from Start Time to create new columns
df['month'] = df['Start Time'].dt.month
df['day_of_week'] = df['Start Time'].dt.day_name()
# filter by month if applicable
if month != 'all':
# use the index of the months list to get the corresponding int
months = ['january', 'february', 'march', 'april', 'may', 'june']
month = months.index(month) + 1
# filter by month to create the new dataframe
df = df[df['month'] == month]
# filter by day of week if applicable
if day != 'all':
# filter by day of week to create the new dataframe
df = df[df['day_of_week'] == day.title()]
return df
def time_stats(df):
"""Displays statistics on the most frequent times of travel."""
print('\nCalculating The Most Frequent Times of Travel...\n')
start_time = time.time()
# display the most common month
common_month = df['month'].mode()[0]
print('Most common month:', common_month)
# display the most common day of week
common_day = df['day_of_week'].mode()[0]
print('Most common day:', common_day)
# display the most common start hour
df['hour'] = df['Start Time'].dt.hour
common_hour = df['hour'].mode()[0]
print('Most common start hour:', common_hour)
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def station_stats(df):
"""Displays statistics on the most popular stations and trip."""
print('\nCalculating the most popular stations and trip...\n')
start_time = time.time()
# display most commonly used start station
common_start_station = df['Start Station'].mode()[0]
print('Most commonly used end station:', common_start_station)
# display most commonly used end station
common_end_station = df['End Station'].mode()[0]
print('Most commonly used end station:', common_end_station)
# display most frequent combination of start station and end station trip
df['Start End Station'] = df['Start Station'] + ' to ' + df['End Station']
common_start_end_station = df['Start End Station'].mode()[0]
print('Most frequent combination of start station and end station trip:', common_start_end_station)
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def trip_duration_stats(df):
"""Displays statistics on the total and average trip duration."""
print('\nCalculating trip duration...\n')
start_time = time.time()
# display total travel time
total_travel_time = df['Trip Duration'].sum()
print('Total travel time:', total_travel_time)
# display mean travel time
mean_travel_time = df['Trip Duration'].mean()
print('Mean travel time:', round(mean_travel_time, 2))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def user_stats(df):
"""Displays statistics on bikeshare users."""
print('\nCalculating User Stats...\n')
start_time = time.time()
# Display counts of user types
user_types = df['User Type'].value_counts()
print('User type counts:')
print(user_types)
# Display counts of gender
if 'Gender' in df.columns:
gender_counts = df['Gender'].value_counts()
print('Gender counts:')
print(gender_counts)
else:
print("Gender data not available.")
# Display earliest, most recent, and most common year of birth
if 'Birth Year' in df.columns:
earliest_year = df['Birth Year'].min()
most_recent_year = df['Birth Year'].max()
most_common_year = df['Birth Year'].mode()[0]
print('Earliest year of Birth:', int(earliest_year))
print('Most recent year of birth:', int(most_recent_year))
print('Most common year of birth:', int(most_common_year))
else:
print("Birth year data not available.")
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def display_raw_data(df):
"""
Displays the raw data of a DataFrame in an interactive manner, displaying 5 rows at a time.
The user can choose to continue viewing the data by entering 'yes', or stop by entering 'no'.
"""
i = 0
raw = input("Do you want to view the raw data? (yes/no) ").lower()
pd.set_option('display.max_columns',200)
while True:
if raw == 'no':
break
elif raw == 'yes':
print(df.iloc[i:i+5])
raw = input("Do you want to view the next 5 rows? (yes/no) ").lower()
i += 5
else:
raw = input("\nInvalid input. Please enter only 'yes' or 'no'\n").lower()
print('-'*40)
def main():
while True:
city, month, day = get_filters()
df = load_data(city, month, day)
display_raw_data(df)
time_stats(df)
station_stats(df)
trip_duration_stats(df)
user_stats(df)
restart = input('\nWould you like to restart? Enter yes or no.\n')
if restart.lower() != 'yes':
break
elif restart.lower() not in ['yes', 'no']:
print("This not an option \n")
restart = input('Please, Choose between yes or no.\n')
if __name__ == "__main__":
main()