forked from zehuachenImperial/SkipConvNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
206 lines (166 loc) · 9.05 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import torch
import torch.nn as nn
from torch.nn import functional as F
from dataloader import SpecImages
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torchsummary import summary
class Conv2d(nn.Module):
"""
Convolutional Module with weights initialized with normal distribution and weights to zeros
"""
def __init__(self, in_channels, out_channels, kernel_size=5, padding=2, stride=2):
super(Conv2d, self).__init__()
self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
padding=padding, stride=2, bias=True)
torch.nn.init.normal_(self.conv.weight, mean=0.0, std=0.02)
torch.nn.init.zeros_(self.conv.bias)
def forward(self, x):
return self.conv(x)
class ConvTranspose2d(nn.Module):
"""
Transpose Convolution Module with weights initialized with normal distribution and weights to zeros
"""
def __init__(self, in_channels, out_channels, kernel_size=2, stride=2):
super(ConvTranspose2d, self).__init__()
self.conv = nn.ConvTranspose2d(in_channels=in_channels, out_channels=out_channels, kernel_size=2, stride=2, bias=True)
torch.nn.init.normal_(self.conv.weight, mean=0.0, std=0.02)
torch.nn.init.zeros_(self.conv.bias)
def forward(self, x):
return self.conv(x)
class SkipBlock(nn.Module):
"""
Each SkipBlock is a Activation -> Convolutions + Residual Connection followed by a normalization
"""
def __init__(self, in_channels, out_channels, kernel_size=5, padding=2):
super(SkipBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
padding=padding, bias=True)
torch.nn.init.normal_(self.conv1.weight, mean=0.0, std=0.02)
torch.nn.init.zeros_(self.conv1.bias)
self.norm = nn.BatchNorm2d(in_channels)
self.lRelu = nn.LeakyReLU(negative_slope=0.2)
def forward(self, x):
return self.norm(self.conv1(self.lRelu(x)) + self.lRelu(x))
class SkipConnection(nn.Module):
"""
SkipConnection is a concatenations of SkipBlocks
"""
def __init__(self, in_channels, num_convblocks):
super(SkipConnection,self).__init__()
self.skip_blocks = [SkipBlock(in_channels, in_channels, kernel_size=3, padding=1) for k in range(num_convblocks)]
self.skip_path = nn.Sequential(*self.skip_blocks)
def forward(self, x):
return self.skip_path(x)
class SkipConvNet(pl.LightningModule):
"""
Proposed: SkipConvNet (Interspeech 2020)
"""
def __init__(self, SpecImageDir):
super(SkipConvNet, self).__init__()
self.modelName = 'SkipConvNet'
self.SpecImageDir = SpecImageDir
self.dconv1 = Conv2d(in_channels=1, out_channels=64, kernel_size=5, padding=2)
self.skip1 = SkipConnection(in_channels=64, num_convblocks=8)
self.dconv2 = Conv2d(in_channels=64, out_channels=128, kernel_size=5, padding=2)
self.dBNorm2 = nn.BatchNorm2d(128)
self.skip2 = SkipConnection(in_channels=128, num_convblocks=8)
self.dconv3 = Conv2d(in_channels=128, out_channels=256, kernel_size=5, padding=2)
self.dBNorm3 = nn.BatchNorm2d(256)
self.skip3 = SkipConnection(in_channels=256, num_convblocks=4)
self.dconv4 = Conv2d(in_channels=256, out_channels=512, kernel_size=5, padding=2)
self.dBNorm4 = nn.BatchNorm2d(512)
self.skip4 = SkipConnection(in_channels=512, num_convblocks=4)
self.dconv5 = Conv2d(in_channels=512, out_channels=512, kernel_size=5, padding=2)
self.dBNorm5 = nn.BatchNorm2d(512)
self.skip5 = SkipConnection(in_channels=512, num_convblocks=2)
self.dconv6 = Conv2d(in_channels=512, out_channels=512, kernel_size=5, padding=2)
self.dBNorm6 = nn.BatchNorm2d(512)
self.skip6 = SkipConnection(in_channels=512, num_convblocks=2)
self.dconv7 = Conv2d(in_channels=512, out_channels=512, kernel_size=5, padding=2)
self.dBNorm7 = nn.BatchNorm2d(512)
self.skip7 = SkipConnection(in_channels=512, num_convblocks=1)
self.dconv8 = Conv2d(in_channels=512, out_channels=512, kernel_size=5, padding=2)
self.uconv1 = nn.ConvTranspose2d(in_channels=512, out_channels=512, kernel_size=2, stride=2)
self.uBNorm1 = nn.BatchNorm2d(512)
self.uconv2 = nn.ConvTranspose2d(in_channels=1024, out_channels=512, kernel_size=2, stride=2)
self.uBNorm2 = nn.BatchNorm2d(512)
self.uconv3 = nn.ConvTranspose2d(in_channels=1024, out_channels=512, kernel_size=2, stride=2)
self.uBNorm3 = nn.BatchNorm2d(512)
self.uconv4 = nn.ConvTranspose2d(in_channels=1024, out_channels=512, kernel_size=2, stride=2)
self.uBNorm4 = nn.BatchNorm2d(512)
self.uconv5 = nn.ConvTranspose2d(in_channels=1024, out_channels=256, kernel_size=2, stride=2)
self.uBNorm5 = nn.BatchNorm2d(256)
self.uconv6 = nn.ConvTranspose2d(in_channels=512, out_channels=128, kernel_size=2, stride=2)
self.uBNorm6 = nn.BatchNorm2d(128)
self.uconv7 = nn.ConvTranspose2d(in_channels=256, out_channels=64, kernel_size=2, stride=2)
self.uBNorm7 = nn.BatchNorm2d(64)
self.uconv8 = nn.ConvTranspose2d(in_channels=128, out_channels=1, kernel_size=2, stride=2)
self.lRelu = nn.LeakyReLU(negative_slope=0.2)
self.relu = nn.ReLU()
self.tanh = nn.Tanh()
self.drop = nn.Dropout(0.5)
def forward(self, x):
# +++++++++++++++++++ Squeezing Path +++++++++++++++++++++ #
d1 = self.dconv1(x)
d2 = self.dBNorm2(self.dconv2(self.lRelu(d1)))
d3 = self.dBNorm3(self.dconv3(self.lRelu(d2)))
d4 = self.dBNorm4(self.dconv4(self.lRelu(d3)))
d5 = self.dBNorm5(self.dconv5(self.lRelu(d4)))
d6 = self.dBNorm6(self.dconv6(self.lRelu(d5)))
d7 = self.dBNorm7(self.dconv7(self.lRelu(d6)))
d8 = self.dconv8(self.lRelu(d7))
# +++++++++++++++++++ Expanding Path +++++++++++++++++++++ #
u1 = self.drop(self.uBNorm1(self.uconv1(self.relu(d8))))
u2 = self.drop(self.uBNorm2(self.uconv2(self.relu(torch.cat((u1, self.skip7(d7)), 1)))))
u3 = self.drop(self.uBNorm3(self.uconv3(self.relu(torch.cat((u2, self.skip6(d6)), 1)))))
u4 = self.uBNorm4(self.uconv4(self.relu(torch.cat((u3, self.skip5(d5)), 1))))
u5 = self.uBNorm5(self.uconv5(self.relu(torch.cat((u4, self.skip4(d4)), 1))))
u6 = self.uBNorm6(self.uconv6(self.relu(torch.cat((u5, self.skip3(d3)), 1))))
u7 = self.uBNorm7(self.uconv7(self.relu(torch.cat((u6, self.skip2(d2)), 1))))
u8 = self.uconv8(self.relu(torch.cat((u7, self.skip1(d1)), 1)))
Output = self.tanh(u8)
return Output
def training_step(self, batch, batch_nb):
x, y = batch
y_hat = self(x)
loss = F.mse_loss(y_hat, y)
tensorboard_logs = {'train_loss': loss}
return {'loss': loss, 'log': tensorboard_logs}
def validation_step(self, batch, batch_nb):
x, y = batch
y_hat = self(x)
return {'val_loss': F.mse_loss(y_hat, y)}
def test_step(self, batch, batch_nb):
x, y = batch
y_hat = self(x)
return {'test_loss': F.mse_loss(y_hat, y)}
def validation_epoch_end(self, outputs):
avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
tensorboard_logs = {'val_loss': avg_loss}
return {'val_loss': avg_loss, 'log': tensorboard_logs}
def test_epoch_end(self, outputs):
avg_loss = torch.stack([x['test_loss'] for x in outputs]).mean()
logs = {'test_loss': avg_loss}
return {'test_loss': avg_loss, 'log': logs} #, 'progress_bar': logs
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=0.0001, weight_decay=1e-5, betas=(0.9,0.999))
scheduler = ReduceLROnPlateau(optimizer, mode='min', patience=1, verbose=True)
return [optimizer], [scheduler]
def train_dataloader(self):
TrainData = SpecImages(self.SpecImageDir+'/1ch/Train', mode='train')
trainloader = DataLoader(TrainData, batch_size=4, shuffle=True, num_workers=8)
return trainloader
def val_dataloader(self):
DevData = SpecImages(self.SpecImageDir+'/1ch/Dev', mode='train')
devloader = DataLoader(DevData, batch_size=4, shuffle=False, num_workers=8)
return devloader
def test_dataloader(self):
EvalData = SpecImages(self.SpecImageDir+'/1ch/Eval', mode='train')
evalloader = DataLoader(EvalData, batch_size=4, shuffle=False, num_workers=8)
return evalloader
if __name__=='__main__':
SpecImageDir = '/data/scratch/vkk160330/Features/Reverb_Spec'
model = SkipConvNet(SpecImageDir).to('cuda')
summary(model, input_size=(1,256,256), batch_size=1, device='cuda')