-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBinarySearch.py
executable file
·64 lines (55 loc) · 1.72 KB
/
BinarySearch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#!/usr/bin/python
# Source : https://leetcode.com/problems/binary-search
# Author : Hamza Mogni
# Date : 2022-06-18
#####################################################################################################
#
# Given an array of integers nums which is sorted in ascending order, and an integer target, write a
# function to search target in nums. If target exists, then return its index. Otherwise, return -1.
#
# You must write an algorithm with O(log n) runtime complexity.
#
# Example 1:
#
# Input: nums = [-1,0,3,5,9,12], target = 9
# Output: 4
# Explanation: 9 exists in nums and its index is 4
#
# Example 2:
#
# Input: nums = [-1,0,3,5,9,12], target = 2
# Output: -1
# Explanation: 2 does not exist in nums so return -1
#
# Constraints:
#
# 1 <= nums.length <= 10^4
# -10^4 < nums[i], target < 10^4
# All the integers in nums are unique.
# nums is sorted in ascending order.
#####################################################################################################
from typing import List
class Solution:
def search(self, nums: List[int], target: int) -> int:
"""
This is a simple and straightforward implementation
of binary search.
Complexity:
- Time: o(log(n))
- Space: o(1)
"""
start, end = 0, len(nums)-1
while start <= end:
middle = start + (end - start) // 2
if nums[middle] == target:
return middle
if nums[middle] > target:
end = middle - 1
else:
start = middle + 1
return -1
s = Solution()
t1 = s.search([1, 2, 3, 4, 5], 9)
assert(t1 == -1)
t2 = s.search([1, 2, 3, 4, 5], 5)
assert(t2 == 4)