-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathContainerWithMostWater.py
executable file
·72 lines (62 loc) · 1.99 KB
/
ContainerWithMostWater.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#!/usr/bin/python
# Source : https://leetcode.com/problems/container-with-most-water
# Author : Hamza Mogni
# Date : 2022-07-04
#####################################################################################################
#
# You are given an integer array height of length n. There are n vertical lines drawn such that the
# two endpoints of the i^th line are (i, 0) and (i, height[i]).
#
# Find two lines that together with the x-axis form a container, such that the container contains the
# most water.
#
# Return the maximum amount of water a container can store.
#
# Notice that you may not slant the container.
#
# Example 1:
#
# Input: height = [1,8,6,2,5,4,8,3,7]
# Output: 49
# Explanation: The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case,
# the max area of water (blue section) the container can contain is 49.
#
# Example 2:
#
# Input: height = [1,1]
# Output: 1
#
# Constraints:
#
# n == height.length
# 2 <= n <= 10^5
# 0 <= height[i] <= 10^4
#####################################################################################################
from typing import List
class Solution:
def maxArea(self, height: List[int]) -> int:
'''
We follow a two pointers approach,
we start at the borders of the array
and move our pointers whenever we find
a line that's higher than the current
shortest line.
Complexity:
- Time: o(n)
- Space: o(1)
'''
start, end = 0, len(height)-1
area = (end - start) * min(height[start], height[end])
while start < end:
if height[start] < height[end]:
start += 1
else:
end -= 1
cur_arr = (end - start) * min(height[start], height[end])
area = max(cur_arr, area)
return area
s = Solution()
T1 = s.maxArea([1, 8, 6, 2, 5, 4, 8, 3, 7])
assert T1 == 49
T2 = s.maxArea([1, 1])
assert T2 == 1