-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSearchA2dMatrix.py
80 lines (67 loc) · 2.29 KB
/
SearchA2dMatrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# Source : https://leetcode.com/problems/search-a-2d-matrix
# Author : Hamza Mogni
# Date : 2022-01-20
#####################################################################################################
#
# Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the
# following properties:
#
# Integers in each row are sorted from left to right.
# The first integer of each row is greater than the last integer of the previous row.
#
# Example 1:
#
# Input: matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
# Output: true
#
# Example 2:
#
# Input: matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13
# Output: false
#
# Constraints:
#
# m == matrix.length
# n == matrix[i].length
# 1 <= m, n <= 100
# -10^4 <= matrix[i][j], target <= 10^4
#####################################################################################################
from typing import List
class Solution:
# Time: o(log(n) + log(m))
# Space: o(1)
def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:
"""
We will binary search the rows first for the one that may
contain our target, taking advanatage of the fact that
rows are also sorted with no overlap.
if we find a possible row, we will run another binary search
to look for our target in that row
"""
rows, cols = len(matrix), len(matrix[0])
upper, lower = 0, rows - 1
while upper <= lower:
row = (upper + lower) // 2
if target > matrix[row][-1]:
upper = row + 1
elif target < matrix[row][0]:
lower = row - 1
else:
break
if upper > lower:
return False
beg, end = 0, cols - 1
while beg <= end:
current = (beg + end) // 2
if target > matrix[row][current]:
beg = current + 1
elif target < matrix[row][current]:
end = current - 1
else:
return True
return False
s = Solution()
test1 = s.searchMatrix([[1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 60]], 3)
test2 = s.searchMatrix([[1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 60]], 13)
assert test1 == True
assert test2 == False