-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path__init__.py
909 lines (785 loc) · 26.1 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
from functools import wraps
def warn(*args, **kwargs):
pass
import warnings
warnings.warn = warn
import sys
debugger = sys.modules[__name__]
debugger.stop_on_exceptions = True
debugger.print_all_exceptions = False
import numexpr
from collections import defaultdict
import cv2
from a_pandas_ex_obj_into_cell import (
put_one_object_into_several_cells,
)
from ansi.colour.rgb import rgb256
from ansi.colour import fg, bg, fx
import numpy as np
from a_cv_imwrite_imread_plus import open_image_in_cv
from a_pandas_ex_plode_tool import pd_add_explode_tools
from PrettyColorPrinter import add_printer
from a_pandas_ex_to_tuple import pd_add_tuples
from flexible_partial import FlexiblePartialOwnName
pd_add_tuples()
from flatten_everything import flatten_everything
from shapely.geometry import Polygon
from shapely.ops import unary_union
from a_pandas_ex_enumerate_groups import pd_add_enumerate_group
from sklearn.cluster import DBSCAN
pd_add_enumerate_group()
from a_cv2_imshow_thread import add_imshow_thread_to_cv2
add_imshow_thread_to_cv2()
add_printer()
pd_add_explode_tools()
from a_pandas_ex_column_reduce import pd_add_column_reduce
import pandas as pd
pd_add_column_reduce()
from a_pandas_ex_horizontal_explode import pd_add_horizontal_explode
pd_add_horizontal_explode()
nested_dict = lambda: defaultdict(nested_dict)
from a_pandas_ex_lookupdict import pd_add_lookup_dict, get_lookup_dict
pd_add_lookup_dict()
from a_pandas_ex_obj_into_cell import pd_add_obj_into_cells
pd_add_obj_into_cells()
from a_pandas_ex_closest_color import get_closest_colors
from a_pandas_ex_multiloc import pd_add_multiloc
pd_add_multiloc()
from pandas.core.frame import DataFrame
from PrettyColorPrinter import add_printer
add_printer(True)
pd_add_obj_into_cells()
def ignore_exceptions_decorator(f_py=None, exception_value=None):
"""
from random import choice
@ignore_exceptions_decorator(print_exception=True, exception_value=False, disable=False)
def testest(number):
if number == 0:
return True
elif number == 1:
print(number / 0)
return True
testex = [testest(choice([0, 1])) for x in range(10)]
division by zero
division by zero
testex
Out[3]: [True, True, False, True, False, True, True, True, True, True]
https://stackoverflow.com/questions/5929107/decorators-with-parameters
#Blueprint for other useful stuff
"""
assert callable(f_py) or f_py is None
def _decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
if debugger.stop_on_exceptions is False:
try:
return func(*args, **kwargs)
except Exception as fexa:
if debugger.print_all_exceptions:
print(fexa)
return exception_value
else:
return func(*args, **kwargs)
return wrapper
return _decorator(f_py) if callable(f_py) else _decorator
@ignore_exceptions_decorator(
exception_value=pd.DataFrame(columns=["x", "y", "red", "green", "blue"]),
)
def image2df(image):
isnumpy = False
try:
isnumpy = "numpy" == type(image).__module__.lower()
except Exception as da:
print(da)
if isnumpy:
image = cv2.rotate(cv2.flip(image, -1), cv2.ROTATE_180)
image = open_image_in_cv(image, bgr_to_rgb=False, channels_in_output=3)
colourArray = image.reshape(
(image.shape[0] * image.shape[1], image.shape[2])
).reshape(image.shape[:-1][::-1] + (3,))
indicesArray = np.moveaxis(np.indices(image.shape[:-1]), 0, 2).reshape(
(*image.shape[:-1][::-1], 2)
)
allArray = np.dstack((indicesArray, colourArray)).reshape((-1, 5))
df2 = pd.DataFrame(allArray, columns=["y", "x", "red", "green", "blue"]).copy()
if not df2.empty:
df2["x"] = df2["x"].astype(np.uint16)
df2["y"] = df2["y"].astype(np.uint16)
if "red" in df2.columns:
df2["red"] = df2["red"].astype(np.uint8)
if "green" in df2.columns:
df2["green"] = df2["green"].astype(np.uint8)
if "blue" in df2.columns:
df2["blue"] = df2["blue"].astype(np.uint8)
df2["red"], df2["blue"] = df2["blue"], df2["red"]
df2 = df2.filter(["x", "y", "red", "green", "blue"])
return df2
@ignore_exceptions_decorator(
exception_value=pd.DataFrame(
columns=["pic_index", "x", "y", "r1", "g1", "b1", "r2", "g2", "b2"]
),
)
def compare_2_df_pictures(df, df2):
if not isinstance(df, pd.DataFrame):
df = image2df(df)
if not isinstance(df2, pd.DataFrame):
df2 = image2df(df2)
df3 = df.compare(df2).index
subresult = (
pd.concat([df.loc[df3], df2.loc[df3]], axis=1, ignore_index=True)
.drop(columns=[5, 6])
.rename(
columns={
0: "x",
1: "y",
2: "r1",
3: "g1",
4: "b1",
7: "r2",
8: "g2",
9: "b2",
}
)
.reset_index()
.rename(columns={"index": "pic_index"})
)
return subresult
@ignore_exceptions_decorator(
exception_value=np.array([]),
)
def convert_x_y_column_to_cv2_coords(df):
return df[["x", "y"]].__array__().reshape((1, -1, 2)).astype(int)
@ignore_exceptions_decorator(
exception_value=np.array([]),
)
def cv2_convex_hull(df):
return cv2.convexHull(convert_x_y_column_to_cv2_coords(df))
@ignore_exceptions_decorator(
exception_value=Polygon(),
)
def cv2_convex_hull_coords_to_shapely(convex_hull_coords):
return Polygon(convex_hull_coords.reshape((-1, 2)))
@ignore_exceptions_decorator(
exception_value=Polygon(),
)
def cv2_xy_coords_to_shapely(df):
convex_hull_coords = cv2_convex_hull(df)
return Polygon(convex_hull_coords.reshape((-1, 2)))
@ignore_exceptions_decorator(
exception_value=list(),
)
def get_shapely_bounds_as_tuple(polygon):
return [int(x) for x in polygon.boundary.bounds]
@ignore_exceptions_decorator(
exception_value=tuple(),
)
def tuple_with_4_to_2_tuples(coords):
return tuple(coords[:2]), tuple(coords[2:])
@ignore_exceptions_decorator(
exception_value=np.array([]),
)
def draw_rectangle_cv2(
image,
start,
end,
color=(0, 0, 255),
outlinecolor=(0, 0, 0),
outlineborder=2,
thickness=2,
):
imi = open_image_in_cv(image, channels_in_output=3).copy()
imi = cv2.rectangle(
imi,
start,
end,
outlinecolor,
outlineborder,
)
imi = cv2.rectangle(
imi,
start,
end,
color,
thickness,
)
return imi
@ignore_exceptions_decorator(
exception_value=pd.DataFrame(columns=["x", "y", "red", "green", "blue"]),
)
def multicolor_lookup(df, colorlist):
if len(colorlist) <= 9:
try:
return multicolor_search_steroids(df, colorlist)
except Exception as fe:
print(fe)
raise fe
pass
return df.d_multiloc(
column_and_values=[
(
"==",
("red", "green", "blue"),
colorlist,
)
],
print_query=False,
)
@ignore_exceptions_decorator(
exception_value=pd.DataFrame(columns=["x", "y", "red", "green", "blue"]),
)
def multicolor_search_steroids(df, colors):
colorstosearch = colors
red = df.red.__array__()
green = df.green.__array__()
blue = df.blue.__array__()
wholedict = {"blue": blue, "green": green, "red": red}
wholecommand = ""
for ini, co in enumerate(colorstosearch):
for ini2, col in enumerate(co):
wholedict[f"varall{ini}_{ini2}"] = np.array([col]).astype(np.uint8)
wholecommand += f"((red == varall{ini}_0) & (green == varall{ini}_1) & (blue == varall{ini}_2))|"
wholecommand = wholecommand.strip("|")
expre = numexpr.evaluate(wholecommand, local_dict=wholedict)
return df.loc[expre]
@ignore_exceptions_decorator(
exception_value=pd.DataFrame(columns=["x", "y", "red", "green", "blue"]),
)
def singlecolor_lookup(df, color):
try:
return multicolor_search_steroids(df, [color])
except Exception as fe:
print(fe)
if "red" in df.columns:
return df.loc[
(df.red == color[0]) & (df.green == color[1]) & (df.blue == color[2])
]
return df.loc[(df.r == color[0]) & (df.g == color[1]) & (df.b == color[2])]
@ignore_exceptions_decorator(
exception_value=dict(),
)
def get_color_lookup_dict(df):
return get_lookup_dict(
df=df, as_values=["x", "y"], as_index=["red", "green", "blue"]
)
@ignore_exceptions_decorator(
exception_value=list(),
)
def get_whole_area(df):
return [
(
int(df["x"].min()),
int(df["y"].min()),
int(df["x"].max()) + 1,
int(df["y"].max()) + 1,
)
]
@ignore_exceptions_decorator(
exception_value=pd.DataFrame(
columns=[
"red",
"green",
"blue",
"qty",
"size_of_area",
"percentage_of_area",
"region",
]
),
)
def get_colors_in_regions_and_count_qty(df, regions=None, with_rgb_tuple_column=False):
if not regions:
regions = get_whole_area(df)
areas = regions
resas = []
for reci in areas:
if (
not isinstance(reci[0], int)
and not isinstance(reci[1], int)
and not isinstance(reci[2], int)
and not isinstance(reci[3], int)
):
continue
area_size = (reci[2] - reci[0]) * (reci[3] - reci[1])
allco = (
df.loc[
(
(df["x"] >= reci[0])
& (df["x"] <= reci[2])
& (df["y"] >= reci[1])
& (df["y"] <= reci[3])
)
]
.value_counts(["red", "green", "blue"])
.reset_index()
.rename(columns={'count': "qty"})
.copy()
)
allco["size_of_area"] = area_size
allco["percentage_of_area"] = allco["qty"] / area_size * 100
allco = put_one_object_into_several_cells(
dframe=allco,
column="region",
value=reci,
indexlist=None,
ffill=True,
bfill=True,
)
resas.append(allco.copy())
iuia = pd.concat(resas, ignore_index=True).copy()
if with_rgb_tuple_column:
tua = tuple(
iuia[["red", "green", "blue"]].ds_to_tuples(index=False, columns=False)
)
iuia = iuia.d_list_items_to_cells(column="color", values=tua)
return iuia
@ignore_exceptions_decorator(
exception_value=np.array([]),
)
def cluster_coordinates(coords, eps=2, min_samples=4, n_jobs=-1, **kwargs):
clustering = DBSCAN(eps=eps, min_samples=min_samples, n_jobs=n_jobs, **kwargs).fit(
coords
)
uniquelabels = np.unique(clustering.labels_)
allresis = [
coords[np.where(clustering.labels_ == u)] for u in uniquelabels if u != -1
]
return allresis
@ignore_exceptions_decorator(
exception_value=np.array([]),
)
def get_xy_from_df(df):
return df[["x", "y"]].__array__()
@ignore_exceptions_decorator(
exception_value=pd.DataFrame(
columns=[
"aa_repr_point",
"aa_bounds",
"aa_polygon",
"aa_area",
"aa_all_coords",
"aa_convexhull",
"aa_convexhull_squeezed",
"aa_draw_poly",
"aa_draw_rectangle",
]
),
)
def get_color_clusters(
coordinates,
eps=2,
min_samples=4,
n_jobs=-1,
poly_color=(255, 255, 0),
poly_outline_thickness=3,
rectanglecolor=(0, 255, 0),
):
if isinstance(coordinates, pd.DataFrame):
readycoords = get_xy_from_df(coordinates)
else:
readycoords = coordinates
clu = cluster_coordinates(
coords=readycoords, eps=eps, min_samples=min_samples, n_jobs=n_jobs
)
allfound = []
for c in clu:
convexh = None
convexhsquee = None
poo = None
repr_point = None
bou = None
drawpoly = None
drawrec = None
area = None
try:
convexh = cv2.convexHull(c.reshape((1, -1, 2)).astype(int))
except Exception as fe:
if debugger.print_all_exceptions:
print(fe)
try:
convexhsquee = np.squeeze(convexh)
except Exception as fe:
if debugger.print_all_exceptions:
print(fe)
try:
poo = Polygon(convexhsquee)
except Exception as fe:
if debugger.print_all_exceptions:
print(fe)
try:
area = poo.area
except Exception as fe:
if debugger.print_all_exceptions:
print(fe)
try:
repr_point = tuple(
[
int(x)
for x in flatten_everything(poo.representative_point().coords.xy)
]
)
except Exception as fe:
if debugger.print_all_exceptions:
print(fe)
try:
bou = tuple(get_shapely_bounds_as_tuple(poo))
except Exception as fe:
if debugger.print_all_exceptions:
print(fe)
try:
drawpoly = FlexiblePartialOwnName(
cv2.polylines,
"()",
False,
np.array([convexhsquee]),
True,
list(reversed(poly_color)),
poly_outline_thickness,
)
except Exception as fe:
if debugger.print_all_exceptions:
print(fe)
try:
drawrec = FlexiblePartialOwnName(
cv2.rectangle,
"()",
False,
list(bou[:2]),
list(bou[2:4]),
list(reversed(rectanglecolor)),
-1,
)
except Exception as fe:
if debugger.print_all_exceptions:
print(fe)
varas = (
repr_point,
bou,
poo,
area,
c,
convexh,
convexhsquee,
drawpoly,
drawrec,
)
allfound.append(varas)
dfframe = pd.DataFrame(allfound, dtype="object")
dfframe.columns = [
"aa_repr_point",
"aa_bounds",
"aa_polygon",
"aa_area",
"aa_all_coords",
"aa_convexhull",
"aa_convexhull_squeezed",
"aa_draw_poly",
"aa_draw_rectangle",
]
return dfframe
@ignore_exceptions_decorator(
exception_value=pd.DataFrame(
columns=[
"aa_repr_point",
"aa_bounds",
"aa_polygon",
"aa_area",
"aa_all_coords",
"aa_convexhull",
"aa_convexhull_squeezed",
"aa_draw_poly",
"aa_draw_rectangle",
"aa_merged_poly",
"aa_merged_poly_bounds",
"aa_merged_poly_area",
"aa_merged_poly_repr_point",
"bb_pic_merged",
"bb_pic",
]
),
)
def get_and_merge_color_clusters(
coordinates,
image=None,
show_results=False,
max_merge_distance=2,
eps=2,
min_samples=4,
n_jobs=-1,
poly_color=(255, 255, 0),
poly_outline_thickness=3,
rectanglecolor=(0, 255, 0),
mergedcolor=(0, 0, 255),
):
imi = None
img_resize = None
colclu = get_color_clusters(
coordinates,
eps=eps,
min_samples=min_samples,
n_jobs=n_jobs,
poly_color=poly_color,
poly_outline_thickness=poly_outline_thickness,
rectanglecolor=rectanglecolor,
)
if not isinstance(image, type(None)):
img_resize = open_image_in_cv(image, channels_in_output=3).copy()
colclu.aa_draw_rectangle.dropna().apply(lambda x: x(img_resize))
colclu.aa_draw_poly.dropna().apply(lambda x: x(img_resize))
joinedcol = colclu["aa_polygon"].s_column_reduce(
expression=f"func([x,y]) if x.distance(y) < {max_merge_distance} else x",
func=unary_union,
own_value_against_own_value=True,
ignore_exceptions=True,
print_exceptions=debugger.print_all_exceptions,
)
joinedcol = joinedcol.s_column_reduce_update(
expression=f"func([x,y]) if x.distance(y) < {max_merge_distance} else x",
func=unary_union,
own_value_against_own_value=True,
ignore_exceptions=True,
print_exceptions=debugger.print_all_exceptions,
)
if not isinstance(image, type(None)):
imi = open_image_in_cv(image, channels_in_output=3).copy()
joinedcol.dropna().apply(
lambda x: tuple_with_4_to_2_tuples(get_shapely_bounds_as_tuple(x))
).drop_duplicates().apply(
lambda y: cv2.rectangle(
imi,
y[0],
y[1],
list(reversed(mergedcolor)),
-1,
)
)
if (
show_results
and not isinstance(imi, type(None))
and not isinstance(img_resize, type(None))
):
cv2.imshow_thread([imi, img_resize])
colclu = (
pd.concat([colclu, joinedcol], axis=1)
.rename(columns={0: "aa_merged_poly"})
.copy()
)
colclu["aa_merged_poly_bounds"] = colclu.aa_merged_poly.apply(
lambda x: ignore_exceptions_decorator(
lambda: tuple_with_4_to_2_tuples(get_shapely_bounds_as_tuple(x)),
exception_value=pd.NA,
)()
)
colclu["aa_merged_poly_area"] = colclu.aa_merged_poly.apply(
lambda x: ignore_exceptions_decorator(
lambda: x.area,
exception_value=pd.NA,
)()
)
colclu["aa_merged_poly_repr_point"] = colclu.aa_merged_poly.apply(
lambda x: ignore_exceptions_decorator(
lambda: tuple(
int(o) for o in flatten_everything(x.representative_point().coords.xy)
),
exception_value=pd.NA,
)()
)
colclu = colclu.d_one_object_to_several_cells(
column="bb_pic_merged",
value=imi,
indexlist=None,
ffill=True,
bfill=True,
)
colclu = colclu.d_one_object_to_several_cells(
column="bb_pic",
value=img_resize,
indexlist=None,
ffill=True,
bfill=True,
)
return colclu
@ignore_exceptions_decorator(
exception_value=pd.DataFrame(columns=["x", "y", "red", "green", "blue"]),
)
def limit_search_areas(df, areas):
query = ""
for reci in areas:
if (
not isinstance(reci[0], int)
and not isinstance(reci[1], int)
and not isinstance(reci[2], int)
and not isinstance(reci[3], int)
):
continue
query += f"""((df["x"] >= {reci[0]}) & (df["x"] <= {reci[2]}) & (df["y"] >= {reci[1]}) & (df["y"] <= {reci[3]}))|"""
query = query.rstrip("|")
return df.loc[eval(query)]
def print_full_col(text, colour):
return "".join(
list(
map(
str,
(
fx.bold,
bg.brightwhite,
fg.brightwhite,
rgb256(colour[0], colour[1], colour[2]),
text,
bg.brightwhite,
fg.brightwhite,
fx.bold,
fx.reset,
),
)
)
)
@ignore_exceptions_decorator(exception_value=None)
def print_colors_in_image(df, end=100):
df2 = get_colors_in_regions_and_count_qty(
df, regions=None, with_rgb_tuple_column=False
)
for li in (
df2[:end]
.apply(
lambda x: print_full_col(
str((x["red"], x["green"], x["blue"])).rjust(20),
(x["red"], x["green"], x["blue"]),
)
+ " "
+ print_full_col("████████", (x["red"], x["green"], x["blue"]))
+ str((x["red"], x["green"], x["blue"])).rjust(20)
+ str(x["qty"]).rjust(10),
axis=1,
)
.to_list()
):
print(li)
# return df
@ignore_exceptions_decorator(
exception_value=pd.DataFrame(columns=["r", "g", "b", "rating", "rgb"]),
)
def find_closest_colors(df, colorlist):
co = (
df[["red", "green", "blue"]]
.value_counts()
.reset_index()
.drop(columns=0)
.astype(np.uint8)
.__array__()
)
return get_closest_colors(colorlist, colorlist=co)
@ignore_exceptions_decorator(
exception_value=[],
)
def get_list_of_all_colors_in_range(start, end):
allco = []
allrgbvals = []
for s, e in zip(start, end):
allrgbvals.append(tuple(range(s, e + 1)))
for r in allrgbvals[0]:
for g in allrgbvals[1]:
for b in allrgbvals[2]:
allco.append((r, g, b))
return allco
@ignore_exceptions_decorator(
exception_value=pd.DataFrame(columns=["x", "y", "red", "green", "blue"]),
)
def get_coords_of_colors_in_region(df, colordict):
wholequery = ""
for key, item in colordict.items():
for ar_ in item:
qu = f'(df["red"] == {key[0]})&(df["green"] == {key[1]})&(df["blue"] == {key[2]})&(df["x"] >= {ar_[0]})&(df["x"] <= {ar_[2]})&(df["y"] >= {ar_[1]})&(df["y"] <= {ar_[3]})|'
wholequery = wholequery + qu
wholequery = wholequery.rstrip("|")
return df.loc[eval(wholequery)]
@ignore_exceptions_decorator(
exception_value=pd.DataFrame(columns=["red", "green", "blue"]),
)
def x_y_as_index(df):
index = pd.MultiIndex.from_arrays(
[df["x"].__array__(), df["y"].__array__()], names=("x", "y")
)
df2 = df.set_index(index).drop(columns=["y", "x"]).sort_index()
return df2
@ignore_exceptions_decorator(
exception_value=pd.DataFrame(columns=["red", "green", "blue"]),
)
def get_colors_of_coords(dframe, coordlist):
aro = x_y_as_index(dframe)
return aro.loc[coordlist]
@ignore_exceptions_decorator(
exception_value=pd.DataFrame(columns=["x", "y"]),
)
def r_g_b_as_index(df2):
index = pd.MultiIndex.from_arrays(
[df2.red.__array__(), df2.green.__array__(), df2.blue.__array__()],
names=("red", "green", "blue"),
)
return df2.set_index(index).drop(columns=["red", "green", "blue"]).sort_index()
@ignore_exceptions_decorator(
exception_value=None,
)
def get_average_rgb(df):
return (df[["red", "green", "blue"]].sum() / len(df)).astype(int).to_list()
@ignore_exceptions_decorator(
exception_value=np.array([]),
)
def df_to_image(df):
maxlen = df.y.max()
blue = np.array(np.array_split(df.blue.to_numpy(), maxlen + 1))
green = np.array(np.array_split(df.green.to_numpy(), maxlen + 1))
red = np.array(np.array_split(df.red.to_numpy(), maxlen + 1))
convertedimage = np.dstack((blue, green, red))
return convertedimage
def df_imshow(df):
bi = df_to_image(df)
cv2.imshow_thread(bi)
return df
def _get_unique_colors_in_region(df, regions, unique):
first = df.im_limit_search_areas(regions) # .drop(columns=['x', 'y'])
second = df.loc[set(df.index) - set(first.index)] # .drop(columns=['x', 'y'])
isthere = first.loc[
first[["red", "green", "blue"]]
.agg(tuple, 1)
.isin(second[["red", "green", "blue"]].agg(tuple, 1))
]
if not unique:
return isthere
isnotthere = first.loc[set(first.index) - set(isthere.index)]
return isnotthere
@ignore_exceptions_decorator(
exception_value=pd.DataFrame(columns=["x", "y", "red", "green", "blue"]),
)
def get_unique_colors_in_region(df, regions):
return _get_unique_colors_in_region(df, regions, unique=True)
@ignore_exceptions_decorator(
exception_value=pd.DataFrame(columns=["x", "y", "red", "green", "blue"]),
)
def get_not_unique_colors_in_region(df, regions):
return _get_unique_colors_in_region(df, regions, unique=False)
def pd_add_image_tools():
pd.Q_image2df = image2df
DataFrame.im_compare_2_images = compare_2_df_pictures
DataFrame.im_xy_to_cv2_coords = convert_x_y_column_to_cv2_coords
DataFrame.im_xy_to_convex_hull = cv2_convex_hull
DataFrame.im_xy_to_shapely = cv2_xy_coords_to_shapely
DataFrame.im_xy_to_np = get_xy_from_df
DataFrame.im_xy_to_color_clusters = get_color_clusters
DataFrame.im_xy_to_merged_color_clusters = get_and_merge_color_clusters
DataFrame.im_multicolor_lookup = multicolor_lookup
DataFrame.im_singlecolor_lookup = singlecolor_lookup
DataFrame.im_get_color_lookup_dict = get_color_lookup_dict
DataFrame.im_get_image_size = get_whole_area
DataFrame.im_get_colors_in_regions_and_count = get_colors_in_regions_and_count_qty
DataFrame.im_limit_search_areas = limit_search_areas
DataFrame.im_print_all_colors = print_colors_in_image
DataFrame.im_get_closest_colors = find_closest_colors
DataFrame.im_get_coords_of_colors_in_regions = get_coords_of_colors_in_region
DataFrame.im_xy_as_index = x_y_as_index
DataFrame.im_rgb_as_index = r_g_b_as_index
DataFrame.im_get_colors_of_coords = get_colors_of_coords
DataFrame.im_get_average_rgb = get_average_rgb
DataFrame.im_df_to_np_image = df_to_image
DataFrame.im_show_df_image = df_imshow
DataFrame.im_get_unique_colors_in_region = get_unique_colors_in_region
DataFrame.im_get_not_unique_colors_in_region = get_not_unique_colors_in_region