a1=[1,2,3,4,5,6,7]
a2=[0,0,3,1,5,6,8,1,32,]
res1=[(index1, index2, value1, value2) for index1, value1 in enumerate(a1) for index2, value2 in enumerate(a2) if value1 == value2]
print(res1)
# [(0, 3, 1, 1), (0, 7, 1, 1), (2, 2, 3, 3), (4, 4, 5, 5), (5, 5, 6, 6)]
res2=[(index1, index2, value1, value2) for index1, value1 in enumerate(a1) for index2, value2 in enumerate(a2) if value1 == value2 and index1==index2]
print(res2)
# [(2, 2, 3, 3), (4, 4, 5, 5), (5, 5, 6, 6)]
from stridesduplicatefinder import get_overlapping
def test_numexpr():
start = perf_counter()
_ = get_overlapping(
fu="a==b", a=a1, b=a2, numpy_or_numexpr="numexpr", same_index_required=False
)
print(f"numexpr test: {perf_counter() - start}")
print(_)
def test_numpy():
start = perf_counter()
_ = get_overlapping(
fu=lambda a, b: a == b,
a=a1,
b=a2,
numpy_or_numexpr="numpy",
same_index_required=False,
)
print(f"numpy test: {perf_counter() - start}")
print(_)
def python_test():
start = perf_counter()
_ = [(i1, i2, a, b) for i2, a in enumerate(a1) for i1, b in enumerate(a2) if a == b]
print(f"python test: {perf_counter() - start}")
print(_[:10])
a1 = np.random.randint(1, 100, size=(19000,),dtype=np.int64)
a2 = np.random.randint(1, 100, size=(7777,),dtype=np.int64)
from time import perf_counter
python_test()
# python test: 13.229658300006122
test_numpy()
# numpy test: 0.5666937999994843
test_numexpr()
# numexpr test: 0.48387080000247806
Calculate overlapping values between two arrays and return the results as a DataFrame.
Parameters:
- fu: function or string to be evaluated as a condition for overlap.
- a: First input array.
- b: Second input array.
- numpy_or_numexpr: 'numpy' or 'numexpr' indicating the evaluation method.
- same_index_required: If True, only return rows where index1 == index2.
Returns:
- A DataFrame with columns 'index1', 'value1', 'index2', 'value2' containing
information about overlapping values.
Example Usage:
- To find overlapping values between two NumPy arrays:
a1 = np.random.randint(1, 10, size=(100000,))
a2 = np.random.randint(1, 10, size=(100,))
df1 = get_overlapping(
fu="a==b", a=a1, b=a2, numpy_or_numexpr="numexpr", same_index_required=True
)
print(df1)
- To find overlapping values using a custom function:
a1 = np.random.randint(1, 10, size=(100000,))
a2 = np.random.randint(1, 10, size=(100,))
df2 = get_overlapping(
fu=lambda a, b: a == b,
a=a1,
b=a2,
numpy_or_numexpr="numpy",
same_index_required=False,
)
print(df2)
- To find overlapping values between two arrays of strings:
a1 = np.array(["aa", "b", "c", "d", "ee11", "f", "gg", "h", "i", "j"])
a1 = np.repeat(a1, 1000)
a2 = np.array(["aa", "b", "c", "ee11", "f", "gg"])
a2 = np.repeat(a2, 1000)
np.random.shuffle(a1)
np.random.shuffle(a2)
df3 = get_overlapping(
fu="a == b",
a=np.char.array(a1).encode("utf-8"),
b=np.char.array(a2).encode("utf-8"),
numpy_or_numexpr="numexpr",
same_index_required=True,
)
print(df3)
# index1 value1 index2 value2
# 0 5 1 5 1
# 1 20 8 20 8
# 2 33 5 33 5
# 3 34 1 34 1
# 4 41 5 41 5
# 5 43 2 43 2
# 6 51 7 51 7
# 7 52 1 52 1
# 8 55 7 55 7
# 9 57 1 57 1
# 10 70 2 70 2
# 11 74 8 74 8
# index1 value1 index2 value2
# 0 0 4 8 4
# 1 0 4 12 4
# 2 0 4 13 4
# 3 0 4 26 4
# 4 0 4 53 4
# ... ... ... ...
# 1112213 99999 9 47 9
# 1112214 99999 9 62 9
# 1112215 99999 9 72 9
# 1112216 99999 9 81 9
# 1112217 99999 9 96 9
# [1112218 rows x 4 columns]
# index1 value1 index2 value2
# 0 1 gg 4 gg
# 1 1 gg 5 gg
# 2 1 gg 10 gg
# 3 1 gg 13 gg
# 4 1 gg 17 gg
# ... ... ... ...
# 5999995 9999 c 5978 c
# 5999996 9999 c 5979 c
# 5999997 9999 c 5990 c
# 5999998 9999 c 5992 c
# 5999999 9999 c 5995 c
# [6000000 rows x 4 columns]
# index1 value1 index2 value2
# 0 31 b'aa' 31 b'aa'
# 1 40 b'b' 40 b'b'
# 2 46 b'aa' 46 b'aa'
# 3 47 b'gg' 47 b'gg'
# 4 65 b'b' 65 b'b'
# .. ... ... ... ...
# 626 5966 b'aa' 5966 b'aa'
# 627 5982 b'f' 5982 b'f'
# 628 5985 b'ee11' 5985 b'ee11'
# 629 5995 b'c' 5995 b'c'
# 630 5996 b'gg' 5996 b'gg'
# [631 rows x 4 columns]
The function computes the overlapping values based on the specified condition (function or string)
and returns a DataFrame with the results. If `same_index_required` is set to True, it filters
the results to include only rows where the indices match.