-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
binaryTreePostorderTraversal.cpp
165 lines (145 loc) · 3.74 KB
/
binaryTreePostorderTraversal.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
// Source : https://oj.leetcode.com/problems/binary-tree-postorder-traversal/
// Author : Hao Chen
// Date : 2014-07-21
/**********************************************************************************
*
* Given a binary tree, return the postorder traversal of its nodes' values.
*
* For example:
* Given binary tree {1,#,2,3},
*
* 1
* \
* 2
* /
* 3
*
* return [3,2,1].
*
* Note: Recursive solution is trivial, could you do it iteratively?
*
**********************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
vector<int> postorderTraversal1(TreeNode *root);
vector<int> postorderTraversal2(TreeNode *root);
// We have two methods here.
// 1) the first one acutally is pre-order but reversed the access order.
// 2) the second one is the traditional one
vector<int> postorderTraversal(TreeNode *root) {
if (random()%2){
cout << "---method one---" << endl;
return postorderTraversal1(root);
}
cout << "---method two---" << endl;
return postorderTraversal2(root);
}
vector<int> postorderTraversal1(TreeNode *root) {
vector<int> v;
vector<TreeNode*> stack;
if (root) {
stack.push_back(root);
}
while (stack.size()>0){
TreeNode *n = stack.back();
stack.pop_back();
v.push_back(n->val);
if (n->left){
stack.push_back(n->left);
}
if (n->right) {
stack.push_back(n->right);
}
}
std::reverse(v.begin(), v.end()); // the trick
return v;
}
// traditional and standard way.
// using the stack to simulate the recursive function stack.
vector<int> postorderTraversal2(TreeNode *root) {
vector<int> v;
vector<TreeNode*> stack;
TreeNode *node = root;
TreeNode *lastVisitNode = NULL;
while(stack.size()>0 || node!=NULL){
if (node != NULL){
// keep going the left
stack.push_back(node);
node = node->left;
}else{
TreeNode *n = stack.back();
// left way is finsised, keep going to the right way
if (n->right != NULL && lastVisitNode != n->right){
node = n->right;
}else{
// both left and right has been accessed.
stack.pop_back();
v.push_back(n->val);
lastVisitNode = n;
}
}
}
return v;
}
TreeNode* createTree(int a[], int n)
{
if (n<=0) return NULL;
TreeNode **tree = new TreeNode*[n];
for(int i=0; i<n; i++) {
if (a[i]==0 ){
tree[i] = NULL;
continue;
}
tree[i] = new TreeNode(a[i]);
}
int pos=1;
for(int i=0; i<n && pos<n; i++) {
if (tree[i]){
tree[i]->left = tree[pos++];
if (pos<n){
tree[i]->right = tree[pos++];
}
}
}
return tree[0];
}
void printTree_post_order(TreeNode *root)
{
if (root == NULL){
//cout << "# ";
return ;
}
printTree_post_order(root->left);
printTree_post_order(root->right);
cout << root->val << " ";
}
void printArray(vector<int> v)
{
for(int i=0; i<v.size(); i++){
cout << v[i] << " ";
}
cout << endl;
}
int main()
{
srand(time(0));
int a[] = {1,2,3,4,5,0,6,0,0,7,8,9,0};
TreeNode* p = createTree(a, sizeof(a)/sizeof(int));
printTree_post_order(p);
cout << endl;
vector<int> v = postorderTraversal(p);
printArray(v);
cout << endl;
return 0;
}