-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
ClosestSubsequenceSum.cpp
112 lines (101 loc) · 3.58 KB
/
ClosestSubsequenceSum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
// Source : https://leetcode.com/problems/closest-subsequence-sum/
// Author : Hao Chen
// Date : 2021-02-15
/*****************************************************************************************************
*
* You are given an integer array nums and an integer goal.
*
* You want to choose a subsequence of nums such that the sum of its elements is the closest possible
* to goal. That is, if the sum of the subsequence's elements is sum, then you want to minimize the
* absolute difference abs(sum - goal).
*
* Return the minimum possible value of abs(sum - goal).
*
* Note that a subsequence of an array is an array formed by removing some elements (possibly all or
* none) of the original array.
*
* Example 1:
*
* Input: nums = [5,-7,3,5], goal = 6
* Output: 0
* Explanation: Choose the whole array as a subsequence, with a sum of 6.
* This is equal to the goal, so the absolute difference is 0.
*
* Example 2:
*
* Input: nums = [7,-9,15,-2], goal = -5
* Output: 1
* Explanation: Choose the subsequence [7,-9,-2], with a sum of -4.
* The absolute difference is abs(-4 - (-5)) = abs(1) = 1, which is the minimum.
*
* Example 3:
*
* Input: nums = [1,2,3], goal = -7
* Output: 7
*
* Constraints:
*
* 1 <= nums.length <= 40
* -107 <= nums[i] <= 107
* -109 <= goal <= 109
******************************************************************************************************/
class Solution {
private:
int abs(int n){
return n>0 ? n : -n;
}
void printSet(set<int>& s){
cout << "[";
for(auto& n : s) {
cout << n << ", ";
}
cout << "]" << endl;
}
int findClosetDiff(set<int>& sums, int goal) {
auto it = sums.lower_bound(goal);
// find the first item >= goal
int high = (it == sums.end()) ? *(sums.rbegin()) : *it;
// find the first item < goal
int low = (it != sums.begin()) ? *(--it) : *it;
return min(abs(low - goal), abs(high - goal));
}
// walk through all of element, and each element could have two chioces:
// add itself into sum or not. So, the time complexity is O(2^n)
void getAllSums(int index, int end, vector<int>& nums, int sum, set<int>& sums) {
if (index > end ) { // the latest one
sums.insert(sum);
return;
}
getAllSums(index+1, end, nums, sum+nums[index], sums); // add it into sum
getAllSums(index+1, end, nums, sum, sums); // skip this item
}
void getAllSums(int start, int end, vector<int>& nums, set<int>& sums) {
//sums.clear();
sums.insert(0);
for (int i=start; i<=end; i++) {
vector<int> s(sums.begin(), sums.end());
for (auto n : s) {
sums.insert(n + nums[i]);
}
}
}
public:
int minAbsDifference(vector<int>& nums, int goal) {
set<int> sums_left, sums_right;
//seprate the arrage to two parts
int mid = nums.size() / 2;
// ---The recusive way cause the TLE problem---
//getAllSums(0, mid, nums, 0, sums_left);
//getAllSums(mid+1, nums.size()-1, nums, 0, sums_right);
getAllSums(0, mid, nums, sums_left);
getAllSums(mid+1, nums.size()-1, nums, sums_right);
int minDiff = INT_MAX;
for (auto& sum : sums_left) {
// Two Sum problem:
// - sum_left + sum_right = goal
// - sum_right = goal = sum_left
minDiff = min(minDiff, findClosetDiff(sums_right, goal - sum));
}
return minDiff;
}
};