-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
99 lines (79 loc) · 3.77 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
import h5py
import netvlad
from NMF import *
class Backbone(nn.Module):
def __init__(self, nmf=True, mlp=False):
super(Backbone, self).__init__()
self.nmf = nmf
self.K = 16
self.max_iter = 50
print("nmf: ", self.nmf)
print("K: ", self.K)
self.mlp = mlp
print("mlp: ", self.mlp)
encoder = models.resnet34(pretrained=True) # resnet34 capture only features and remove last relu and maxpool
layers = list(encoder.children())[:-3]
self.encoder = nn.Sequential(*layers)
self.relu = nn.ReLU(inplace=True)
self.mlp = nn.Sequential(nn.Conv2d(256, 128, kernel_size=(1, 1)),
nn.ReLU(),
nn.Conv2d(128, self.K, kernel_size=(1, 1)),
nn.ReLU())
self.net_vlad_cnn = netvlad.NetVLAD(num_clusters=64, dim=256, vladv2=True)
self.net_vlad_nmf = netvlad.NetVLAD(num_clusters=64, dim=self.K, vladv2=True)
self.net_vlad_mlp = netvlad.NetVLAD(num_clusters=64, dim=self.K, vladv2=True)
initcache = "/root/I2P/I2P-v2/centroid/centroids/resnet34_ugv_data_64_desc_cen.hdf5"
with h5py.File(initcache, mode='r') as h5:
clsts = h5.get("centroids")[...]
traindescs = h5.get("descriptors")[...]
self.net_vlad_cnn.init_params(clsts, traindescs)
# self.net_vlad_nmf.init_params(clsts, traindescs)
del clsts, traindescs
def forward(self, x):
# cnn
x = self.encoder(x)
x = F.normalize(x, p=2, dim=1)
x_mid = x
if self.nmf:
with torch.no_grad(): # nmf is not derivable
features = x.contiguous()
b, h, w = features.size(0), features.size(2), features.size(3)
features = self.relu(features)
flat_features = features.permute(0, 2, 3, 1).contiguous().view(-1, features.size(1))
W, _ = NMF(flat_features, self.K, random_seed=1, cuda=True, max_iter=self.max_iter, verbose=False)
isnan = torch.sum(torch.isnan(W).float())
while isnan > 0:
print('nan detected. trying to resolve the nmf.')
W, _ = NMF(flat_features, self.K, random_seed=random.randint(0, 255), cuda=True, max_iter=self.max_iter, verbose=False)
isnan = torch.sum(torch.isnan(W).float())
heatmaps = W.view(b, h, w, self.K).permute(0,3,1,2)
heatmaps = F.normalize(heatmaps, p=2, dim=1)
heatmaps.requires_grad = False
x_nmf = self.net_vlad_nmf(heatmaps)
x_nmf = F.normalize(x_nmf, p=2, dim=1)
if self.mlp:
feature_mlp = x
feature_mlp = self.mlp(feature_mlp)
feature_mlp = F.normalize(feature_mlp, p=2, dim=1)
feature_mlp = self.net_vlad_mlp(feature_mlp)
x_mlp = F.normalize(feature_mlp, p=2, dim=1)
x = self.net_vlad_cnn(x)
x = F.normalize(x, p=2, dim=1)
if self.nmf:
x = torch.cat((x, x_nmf), 1)
if self.mlp:
x = torch.cat((x, x_mlp), 1)
return x_mid, x
class TripletLossSimple(nn.Module):
def __init__(self, margin=0.3):
super(TripletLossSimple, self).__init__()
self.margin = margin
def forward(self, anchor, positive, negative):
pos_dist = torch.sqrt((anchor - positive).pow(2).sum(1))
neg_dist = torch.sqrt((anchor - negative).pow(2).sum(1))
loss = F.relu(pos_dist-neg_dist + self.margin)
return loss.mean()