-
Notifications
You must be signed in to change notification settings - Fork 67
/
enhancement.py
74 lines (60 loc) · 2.49 KB
/
enhancement.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import argparse
import json
import os
import librosa
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from util.utils import initialize_config, load_checkpoint
"""
Parameters
"""
parser = argparse.ArgumentParser("Wave-U-Net: Speech Enhancement")
parser.add_argument("-C", "--config", type=str, required=True, help="Model and dataset for enhancement (*.json).")
parser.add_argument("-D", "--device", default="-1", type=str, help="GPU for speech enhancement. default: CPU")
parser.add_argument("-O", "--output_dir", type=str, required=True, help="Where are audio save.")
parser.add_argument("-M", "--model_checkpoint_path", type=str, required=True, help="Checkpoint.")
args = parser.parse_args()
"""
Preparation
"""
os.environ["CUDA_VISIBLE_DEVICES"] = args.device
config = json.load(open(args.config))
model_checkpoint_path = args.model_checkpoint_path
output_dir = args.output_dir
assert os.path.exists(output_dir), "Enhanced directory should be exist."
"""
DataLoader
"""
device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
dataloader = DataLoader(dataset=initialize_config(config["dataset"]), batch_size=1, num_workers=0)
"""
Model
"""
model = initialize_config(config["model"])
model.load_state_dict(load_checkpoint(model_checkpoint_path, device))
model.to(device)
model.eval()
"""
Enhancement
"""
sample_length = config["custom"]["sample_length"]
for mixture, name in tqdm(dataloader):
assert len(name) == 1, "Only support batch size is 1 in enhancement stage."
name = name[0]
padded_length = 0
mixture = mixture.to(device) # [1, 1, T]
# The input of the model should be fixed length.
if mixture.size(-1) % sample_length != 0:
padded_length = sample_length - (mixture.size(-1) % sample_length)
mixture = torch.cat([mixture, torch.zeros(1, 1, padded_length, device=device)], dim=-1)
assert mixture.size(-1) % sample_length == 0 and mixture.dim() == 3
mixture_chunks = list(torch.split(mixture, sample_length, dim=-1))
enhanced_chunks = []
for chunk in mixture_chunks:
enhanced_chunks.append(model(chunk).detach().cpu())
enhanced = torch.cat(enhanced_chunks, dim=-1) # [1, 1, T]
enhanced = enhanced if padded_length == 0 else enhanced[:, :, :-padded_length]
enhanced = enhanced.reshape(-1).numpy()
output_path = os.path.join(output_dir, f"{name}.wav")
librosa.output.write_wav(output_path, enhanced, sr=16000)